Research Article
BibTex RIS Cite

A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS

Year 2017, Volume: 17 Issue: 1, 3169 - 3178, 27.03.2017
https://izlik.org/JA73GE69UT

Abstract

In this study, reversible circuits are revisited
to achieve extreme soft-defect awareness in classical CMOS circuits. Defect
models in the literature are reviewed and defect scattering is analyzed. A
reversible 8-bit full adder is designed in 12-bit block code domain. As a proof
of concept, a pair of reversible ALUs are embedded into a microprocessor with
block-code encoded data-path. The design is simulated in ams 0.35um process and
a layout is obtained for tapeout.

References

  • [1] Binder D., Smith, E.C. and Holman, A.B., 1975. “Satellite anomalies from galactic cosmic rays”, IEEE Trans. Nucl. Sci., vol. NS-22, no. 6, pp. 2675–2680.
  • [2] May, T.C. and Woods, M.H., 1978. “A new physical mechanism for soft errors in dynamic memories”, in Proc. Int’l Rel. Phys. Symp. (IRPS), pp. 33–40.
  • [3] Nicolaidis, M. ed., 2010. Soft errors in modern electronic systems (Vol. 41). Springer Science & Business Media.
  • [4] Toffoli, T., 1980. J. W. de Bakker and J. van Leeuwen, ed. "Reversible computing". Automata, Languages and Programming, Seventh Colloquium. Springer Verlag, Noordwijkerhout, Netherland.
  • [5] Maslov, D., Dueck, G. W., and Miller, D.M., “Toffoli Network Synthesis with Templates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 6, June 2005
  • [6] Brown, J., 2000, The Quest for the Quantum Computer, Touchstone, New York.
  • [7] Benioff, P., 1980. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), pp.563-591
  • [8] Beckman, D., Chari, A.N., Devabhaktuni, S., and Preskill, J., 1996. Efficient networks for quantum factoring. Physical Review A, 54(2), p.1034.
  • [9] Moore, G.E., 1965. Cramming more components onto integrated circuits, Electronics Magazine. p. 4.
  • [10] Miller, D.M., Maslov, D., and Dueck, G.W., 2003, June. A transformation based algorithm for reversible logic synthesis. In Proceedings of the 40th annual Design Automation Conference (pp. 318-323). ACM
  • [11] Wille, R. and Drechsler, R., 2009, July. BDD-based synthesis of reversible logic for large functions. In Proceedings of the 46th Annual Design Automation Conference (pp. 270-275). ACM.
  • [12] Miller, D.M. and Thornton, M.A., 2006, May. QMDD: A decision diagram structure for reversible and quantum circuits. In Multiple-Valued Logic, 2006. ISMVL 2006. 36th International Symposium on (pp. 30-30). IEEE.
  • [13] Soeken, M., Wille, R., Hilken, C., Przigoda, N., and Drechsler, R., 2012, January. Synthesis of reversible circuits with minimal lines for large functions. In Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific (pp. 85-92). IEEE.
  • [14] Bennett, C.H., 2003. Notes on Landauer's principle, reversible computation, and Maxwell's Demon. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 34(3), pp.501-510.
  • [15] Landauer, R., 1961. Irreversibility and heat generation in the computing process. IBM journal of research and development, 5(3), pp.183-191.
  • [16] Willingham, D.J. and Kale, I., 2008. Using positive feedback adiabatic logic to implement reversible Toffoli gates.
  • [17] Thomsen, M.K., 2012. Design of reversible logic circuits using standard cells: Standard cells and functional programming. Department of Computer Science, University of Copenhagen.
  • [18] Burignat, S., Thomsen, M.K., Klimczak, M., Olczak, M., and De Vos, A., 2011. Interfacing reversible pass-transistor CMOS chips with conventional restoring CMOS circuits. InReversible Computation (pp. 112-122). Springer Berlin Heidelberg.
  • [19] Susam, O. and Altun, M., 2016. Fast Synthesis of Reversible Circuits using a Sorting Algorithm and Optimization. Journal of Multiple-Valued Logic and Soft Computing, accepted for publication.
  • [20] Wootters, W., Zurek, W., 1982. "A Single Quantum Cannot be Cloned". Nature 299: 802–803.
  • [21] Wille, R., Große, D., Teuber, L., Dueck, G.W., and Drechsler, R., 2008, May. RevLib: An online resource for reversible functions and reversible circuits. In Multiple Valued Logic, 2008. ISMVL 2008. 38th International Symposium on (pp. 220-225). IEEE.
  • [22] Parhami, B., 2006, October. Fault-tolerant reversible circuits. In Signals, Systems and Computers, 2006. ACSSC'06. Fortieth Asilomar Conference on (pp. 1726-1729). IEEE.
  • [23] Boykin, P.O. and Roychowdhury, V.P., 2005, June. Reversible fault-tolerant logic. In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. International Conference on (pp. 444-453). IEEE.
  • [24] Przigoda, N., Dueck, G., Wille, R. and Drechsler, R., 2016. Fault Detection in Parity Preserving Reversible Circuits.
  • [25] DiVincenzo, D.P. and Shor, P.W., 1996. Fault-tolerant error correction with efficient quantum codes. Physical review letters, 77(15), p.3260.
  • [26] Van Rentergem, Y. and De Vos, A., 2005. Optimal design of a reversible full adder. International Journal of Unconventional Computing, 1(4), p.339.

Year 2017, Volume: 17 Issue: 1, 3169 - 3178, 27.03.2017
https://izlik.org/JA73GE69UT

Abstract

References

  • [1] Binder D., Smith, E.C. and Holman, A.B., 1975. “Satellite anomalies from galactic cosmic rays”, IEEE Trans. Nucl. Sci., vol. NS-22, no. 6, pp. 2675–2680.
  • [2] May, T.C. and Woods, M.H., 1978. “A new physical mechanism for soft errors in dynamic memories”, in Proc. Int’l Rel. Phys. Symp. (IRPS), pp. 33–40.
  • [3] Nicolaidis, M. ed., 2010. Soft errors in modern electronic systems (Vol. 41). Springer Science & Business Media.
  • [4] Toffoli, T., 1980. J. W. de Bakker and J. van Leeuwen, ed. "Reversible computing". Automata, Languages and Programming, Seventh Colloquium. Springer Verlag, Noordwijkerhout, Netherland.
  • [5] Maslov, D., Dueck, G. W., and Miller, D.M., “Toffoli Network Synthesis with Templates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 6, June 2005
  • [6] Brown, J., 2000, The Quest for the Quantum Computer, Touchstone, New York.
  • [7] Benioff, P., 1980. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 22(5), pp.563-591
  • [8] Beckman, D., Chari, A.N., Devabhaktuni, S., and Preskill, J., 1996. Efficient networks for quantum factoring. Physical Review A, 54(2), p.1034.
  • [9] Moore, G.E., 1965. Cramming more components onto integrated circuits, Electronics Magazine. p. 4.
  • [10] Miller, D.M., Maslov, D., and Dueck, G.W., 2003, June. A transformation based algorithm for reversible logic synthesis. In Proceedings of the 40th annual Design Automation Conference (pp. 318-323). ACM
  • [11] Wille, R. and Drechsler, R., 2009, July. BDD-based synthesis of reversible logic for large functions. In Proceedings of the 46th Annual Design Automation Conference (pp. 270-275). ACM.
  • [12] Miller, D.M. and Thornton, M.A., 2006, May. QMDD: A decision diagram structure for reversible and quantum circuits. In Multiple-Valued Logic, 2006. ISMVL 2006. 36th International Symposium on (pp. 30-30). IEEE.
  • [13] Soeken, M., Wille, R., Hilken, C., Przigoda, N., and Drechsler, R., 2012, January. Synthesis of reversible circuits with minimal lines for large functions. In Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific (pp. 85-92). IEEE.
  • [14] Bennett, C.H., 2003. Notes on Landauer's principle, reversible computation, and Maxwell's Demon. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 34(3), pp.501-510.
  • [15] Landauer, R., 1961. Irreversibility and heat generation in the computing process. IBM journal of research and development, 5(3), pp.183-191.
  • [16] Willingham, D.J. and Kale, I., 2008. Using positive feedback adiabatic logic to implement reversible Toffoli gates.
  • [17] Thomsen, M.K., 2012. Design of reversible logic circuits using standard cells: Standard cells and functional programming. Department of Computer Science, University of Copenhagen.
  • [18] Burignat, S., Thomsen, M.K., Klimczak, M., Olczak, M., and De Vos, A., 2011. Interfacing reversible pass-transistor CMOS chips with conventional restoring CMOS circuits. InReversible Computation (pp. 112-122). Springer Berlin Heidelberg.
  • [19] Susam, O. and Altun, M., 2016. Fast Synthesis of Reversible Circuits using a Sorting Algorithm and Optimization. Journal of Multiple-Valued Logic and Soft Computing, accepted for publication.
  • [20] Wootters, W., Zurek, W., 1982. "A Single Quantum Cannot be Cloned". Nature 299: 802–803.
  • [21] Wille, R., Große, D., Teuber, L., Dueck, G.W., and Drechsler, R., 2008, May. RevLib: An online resource for reversible functions and reversible circuits. In Multiple Valued Logic, 2008. ISMVL 2008. 38th International Symposium on (pp. 220-225). IEEE.
  • [22] Parhami, B., 2006, October. Fault-tolerant reversible circuits. In Signals, Systems and Computers, 2006. ACSSC'06. Fortieth Asilomar Conference on (pp. 1726-1729). IEEE.
  • [23] Boykin, P.O. and Roychowdhury, V.P., 2005, June. Reversible fault-tolerant logic. In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. International Conference on (pp. 444-453). IEEE.
  • [24] Przigoda, N., Dueck, G., Wille, R. and Drechsler, R., 2016. Fault Detection in Parity Preserving Reversible Circuits.
  • [25] DiVincenzo, D.P. and Shor, P.W., 1996. Fault-tolerant error correction with efficient quantum codes. Physical review letters, 77(15), p.3260.
  • [26] Van Rentergem, Y. and De Vos, A., 2005. Optimal design of a reversible full adder. International Journal of Unconventional Computing, 1(4), p.339.
There are 26 citations in total.

Details

Subjects Engineering
Journal Section Research Article
Authors

M. Hüsrev Cılasun This is me

Mustafa Altun

Publication Date March 27, 2017
IZ https://izlik.org/JA73GE69UT
Published in Issue Year 2017 Volume: 17 Issue: 1

Cite

APA Cılasun, M. H., & Altun, M. (2017). A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS. IU-Journal of Electrical & Electronics Engineering, 17(1), 3169-3178. https://izlik.org/JA73GE69UT
AMA 1.Cılasun MH, Altun M. A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS. IU-Journal of Electrical & Electronics Engineering. 2017;17(1):3169-3178. https://izlik.org/JA73GE69UT
Chicago Cılasun, M. Hüsrev, and Mustafa Altun. 2017. “A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS”. IU-Journal of Electrical & Electronics Engineering 17 (1): 3169-78. https://izlik.org/JA73GE69UT.
EndNote Cılasun MH, Altun M (March 1, 2017) A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS. IU-Journal of Electrical & Electronics Engineering 17 1 3169–3178.
IEEE [1]M. H. Cılasun and M. Altun, “A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS”, IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 1, pp. 3169–3178, Mar. 2017, [Online]. Available: https://izlik.org/JA73GE69UT
ISNAD Cılasun, M. Hüsrev - Altun, Mustafa. “A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS”. IU-Journal of Electrical & Electronics Engineering 17/1 (March 1, 2017): 3169-3178. https://izlik.org/JA73GE69UT.
JAMA 1.Cılasun MH, Altun M. A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS. IU-Journal of Electrical & Electronics Engineering. 2017;17:3169–3178.
MLA Cılasun, M. Hüsrev, and Mustafa Altun. “A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS”. IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 1, Mar. 2017, pp. 3169-78, https://izlik.org/JA73GE69UT.
Vancouver 1.Cılasun MH, Altun M. A NOVEL REVERSIBLE FAULT TOLERANT MICROPROCESSOR DESIGN IN AMS 0.35UM PROCESS. IU-Journal of Electrical & Electronics Engineering [Internet]. 2017 Mar. 1;17(1):3169-78. Available from: https://izlik.org/JA73GE69UT