Research Article
BibTex RIS Cite

FUZZY PID CONTROLLER FOR PROPELLER PENDULUM

Year 2017, Volume: 17 Issue: 1, 3201 - 3207, 27.03.2017

Abstract

In this paper, a fuzzy PID controller is proposed for angular position control of a nonlinear propeller
pendulum system. While classical control methods work well on linear systems, nonlinear control approaches should be
designed for nonlinear ones. On the one hand, there are three constant gains related with linear proportional, integral
and derivative terms in classical PID controller. On the other hand, these gains are varied with time by the proposed
controller using fuzzy logic inference. In order to demonstrate the position control enhancement for the nonlinear
system, the proposed controller is compared with classical PID controller using simulation results with and without
external disturbance. The simulation results show that the proposed Fuzzy PID controller is more successful in
reference tracking than classical PID controller.

References

  • [1] A. Farmanbordar, N. Zaeri and S. Rahimi, "Stabilizing a Driven Pendulum Using DLQR Control", in 2011 Fifth Asia Modelling Symposium, 2011, pp. 123-126.
  • [2] A. Mohammadbagheri and M. Yaghoobi, "A New Approach to Control A Driven Pendulum with PID Method", in 2011 UKSim 13th International Conference on Modelling and Simulation, 2011, pp. 207-211.
  • [3] H. Kizmaz, S. Aksoy and A. Muhurcu, “Sliding mode control of suspended pendulum”, Modern Electric Power Systems (MEPS), in 2010 Proceedings of the International Symposium, 2010, pp. 1-6.
  • [4] G. Habib, A. Miklos, E. T. Enikov, G. Stepan and G. Rega, “Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control”, International Journal of Dynamics and Control, 2015, DOI 10.1007/s40435-015-0203-0.
  • [5] S. Srinivasulu Raju, T.S. Darshan and B. Nagendra, “Design of Quadratic Dynamic Matrix Control for Driven Pendulum System”, International Journal of Electronics and Communication Engineering, Vol. 5, No. 3, pp. 363-370, 2012.
  • [6] M. Yoon, “Stabilization of a Propeller - Driven Pendulum”, International Journal of Engineering Research & Technology (IJERT), Vol. 5, Iss. 1, pp. 230-233, 2016.
  • [7] R. Ghasemi, M. R. Rahimi Khoygani, “Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System”, International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol. 8, No. 11, pp. 2021-2025, 2014.
  • [8] T. Huba, T. Malatinec, M. Huba, “Propeller-Pendulum for Nonlinear UAVs Control”, iJOE, Vol. 9, Issue 1, pp. 42-46, 2013.
  • [9] E.T. Enikov, V. Polyzoev, J. Gill, “Low-Cost Take-Home Experiment on Classical Control Using Matlab/Simulink Real-Time Windows Target”, in Proceedings of the 2010 American Society for Engineering Education Zone IV Conference, 2010, pp. 1-9.
  • [10] M.R.R. Khoygani, R. Ghasemi, D. Sanaei, “Design Controller for a Class of Nonlinear Pendulum Dynamical System”, International Journal of Artificial Intelligence, Vol. 2, No.4, pp. 159-168, 2013.
  • [11] Y. Gültekin and Y.Taşcıoğlu, “Pendulum Positioning System Actuated by Dual Motorized Propellers”, in 6th International Advanced Technologies Symposium, 2011, pp. 6-9.
  • [12] O. Karasakal, E. Yeşil, M. Güzelkaya, I. Eksin, “Implementation of a new self-tuning fuzzy PID controller on PLC”, Turkish Journal of Electrical Engineering, Vol. 13, No. 2, pp. 277–286, 2005.
  • [13] H. B. Kazemian, “Developments of fuzzy PID controllers”, Expert Systems, Vol. 22, No. 5, pp. 254-264, 2005.
  • [14] J.Y. Kim, H.M. Kim, S.K. Kim, J.H. Jeon, H.K. Choi, “Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation”, Energies, Vol. 4, pp. 1443-1460, 2011.
Year 2017, Volume: 17 Issue: 1, 3201 - 3207, 27.03.2017

Abstract

References

  • [1] A. Farmanbordar, N. Zaeri and S. Rahimi, "Stabilizing a Driven Pendulum Using DLQR Control", in 2011 Fifth Asia Modelling Symposium, 2011, pp. 123-126.
  • [2] A. Mohammadbagheri and M. Yaghoobi, "A New Approach to Control A Driven Pendulum with PID Method", in 2011 UKSim 13th International Conference on Modelling and Simulation, 2011, pp. 207-211.
  • [3] H. Kizmaz, S. Aksoy and A. Muhurcu, “Sliding mode control of suspended pendulum”, Modern Electric Power Systems (MEPS), in 2010 Proceedings of the International Symposium, 2010, pp. 1-6.
  • [4] G. Habib, A. Miklos, E. T. Enikov, G. Stepan and G. Rega, “Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control”, International Journal of Dynamics and Control, 2015, DOI 10.1007/s40435-015-0203-0.
  • [5] S. Srinivasulu Raju, T.S. Darshan and B. Nagendra, “Design of Quadratic Dynamic Matrix Control for Driven Pendulum System”, International Journal of Electronics and Communication Engineering, Vol. 5, No. 3, pp. 363-370, 2012.
  • [6] M. Yoon, “Stabilization of a Propeller - Driven Pendulum”, International Journal of Engineering Research & Technology (IJERT), Vol. 5, Iss. 1, pp. 230-233, 2016.
  • [7] R. Ghasemi, M. R. Rahimi Khoygani, “Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System”, International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol. 8, No. 11, pp. 2021-2025, 2014.
  • [8] T. Huba, T. Malatinec, M. Huba, “Propeller-Pendulum for Nonlinear UAVs Control”, iJOE, Vol. 9, Issue 1, pp. 42-46, 2013.
  • [9] E.T. Enikov, V. Polyzoev, J. Gill, “Low-Cost Take-Home Experiment on Classical Control Using Matlab/Simulink Real-Time Windows Target”, in Proceedings of the 2010 American Society for Engineering Education Zone IV Conference, 2010, pp. 1-9.
  • [10] M.R.R. Khoygani, R. Ghasemi, D. Sanaei, “Design Controller for a Class of Nonlinear Pendulum Dynamical System”, International Journal of Artificial Intelligence, Vol. 2, No.4, pp. 159-168, 2013.
  • [11] Y. Gültekin and Y.Taşcıoğlu, “Pendulum Positioning System Actuated by Dual Motorized Propellers”, in 6th International Advanced Technologies Symposium, 2011, pp. 6-9.
  • [12] O. Karasakal, E. Yeşil, M. Güzelkaya, I. Eksin, “Implementation of a new self-tuning fuzzy PID controller on PLC”, Turkish Journal of Electrical Engineering, Vol. 13, No. 2, pp. 277–286, 2005.
  • [13] H. B. Kazemian, “Developments of fuzzy PID controllers”, Expert Systems, Vol. 22, No. 5, pp. 254-264, 2005.
  • [14] J.Y. Kim, H.M. Kim, S.K. Kim, J.H. Jeon, H.K. Choi, “Designing an Energy Storage System Fuzzy PID Controller for Microgrid Islanded Operation”, Energies, Vol. 4, pp. 1443-1460, 2011.
There are 14 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Yener Taskın

Publication Date March 27, 2017
Published in Issue Year 2017 Volume: 17 Issue: 1

Cite

APA Taskın, Y. (2017). FUZZY PID CONTROLLER FOR PROPELLER PENDULUM. IU-Journal of Electrical & Electronics Engineering, 17(1), 3201-3207.
AMA Taskın Y. FUZZY PID CONTROLLER FOR PROPELLER PENDULUM. IU-Journal of Electrical & Electronics Engineering. March 2017;17(1):3201-3207.
Chicago Taskın, Yener. “FUZZY PID CONTROLLER FOR PROPELLER PENDULUM”. IU-Journal of Electrical & Electronics Engineering 17, no. 1 (March 2017): 3201-7.
EndNote Taskın Y (March 1, 2017) FUZZY PID CONTROLLER FOR PROPELLER PENDULUM. IU-Journal of Electrical & Electronics Engineering 17 1 3201–3207.
IEEE Y. Taskın, “FUZZY PID CONTROLLER FOR PROPELLER PENDULUM”, IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 1, pp. 3201–3207, 2017.
ISNAD Taskın, Yener. “FUZZY PID CONTROLLER FOR PROPELLER PENDULUM”. IU-Journal of Electrical & Electronics Engineering 17/1 (March 2017), 3201-3207.
JAMA Taskın Y. FUZZY PID CONTROLLER FOR PROPELLER PENDULUM. IU-Journal of Electrical & Electronics Engineering. 2017;17:3201–3207.
MLA Taskın, Yener. “FUZZY PID CONTROLLER FOR PROPELLER PENDULUM”. IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 1, 2017, pp. 3201-7.
Vancouver Taskın Y. FUZZY PID CONTROLLER FOR PROPELLER PENDULUM. IU-Journal of Electrical & Electronics Engineering. 2017;17(1):3201-7.