Research Article
BibTex RIS Cite

A CNN Based Rotation Invariant Fingerprint Recognition System

Year 2017, Volume: 17 Issue: 2, 3471 - 3479, 27.07.2017

Abstract

This paper presents a Cellular
Neural Networks (CNN) based rotation invariant fingerprint recognition system
by keeping the hardware implementability in mind. Core point was used as a
reference point and detection of the core point was implemented in the CNN
framework. Proposed system consists of four stages: preprocessing, feature
extraction, false feature elimination and matching. Preprocessing enhances the
input fingerprint image. Feature extraction creates rotation invariant features
by using core point as a reference point. False feature elimination increases
the system performance by removing the false minutiae points. Matching stage
compares extracted features and creates a matching score. Recognition
performance of the proposed system has been tested by using high resolution
PolyU HRF DBII database. The results are very encouraging for implementing a
CNN based fully automatic rotation invariant fingerprint recognition system.

References

  • [1] Q. Gao, S. Moschytz, “Fingerprint Feature Extraction Using CNNs”, in Proceedings of European Conference on Circuit Theory and Design 2001, Espoo, Finland, 2001, pp. 28-31.
  • [2] T. Su , Y. Du, Y. Cheng, Y. Su, “Fingerprint Recognition System Using Cellular Neural Network”, in Proceedings of 9th International Workshop on Cellular Neural Networks and their Applications, Hsinchu, Taiwan, 2005, pp. 170-173.
  • [3] I. Kale, R. Abrishambaf, H. Demirel, “A Fully CNN Based Fingerprint Recognition System”, in Proceedings of 11th International Workshop on Cellular Neural Networks and Their Applications, Santiago de Compostela, Spain, 2008, pp. 14-16.
  • [4] L. O. Chua, L. Yang, “Cellular neural networks: Theory”, IEEE T CIRCUITS SYST, vol. 35, pp. 1257-1272, 1988.
  • [5] M. D. Doan, M. Glenser, R. Chakrabaty, M. Heidenreich, S. Cheung, “Realization of a Digital Cellular Neural Network for Image Processing”, in Proceedings of Third International Workshop on Cellular Neural Networks and Their Applications, Rome, Italy, 1994, pp. 85-90.
  • [6] E. Saatci, “Image Processing Using Cellular Neural Networks”, PhD Thesis, London South Bank University, London, UK, 2003.
  • [7] L. O. Chua, L. Yang, “Cellular Neural Networks: Applications”, IEEE T CIRCUITS SYST, vol. 35, pp. 1273-1290, 1988.
  • [8] K. R. Crounce, L. O. Chua, “Methods for Image Processing and Pattern Formation in Cellular Neural Networks: A Tutorial”, IEEE T CIRCUITS-I, vol. 42, pp. 583-601, 1995.
  • [9] Z. Nagy, P. Szolgay, “Configurable multilayer CNN-UM emulator on FPGA”, IEEE T CIRCUITS-I, vol. 50, pp. 774-778, 2003.
  • [10] J. Javier Martinez, F. Javier Toledo, E. Fernandez, J. M. Ferrandez, “A retinomorphic architecture based on discretetime cellular neural networks using reconfigurable computing”, NEUROCOMPUTING, vol. 71, pp. 766-775, 2008.
  • [11] K. Kayaer, V. Tavsanoglu, “A new approach to emulate CNN on FPGAs for real time video processing”, in Proceedings of 11th International Workshop on Cellular Neural Networks and Their Applications, Santiago de Compostela, Spain, 2008, pp. 23-28.
  • [12] N. Yildiz, E. Cesur, K. Kayaer, V. Tavsanoglu, M. Alpay, “Architecture of a Fully Pipelined Real-Time Cellular Neural Network Emulator”, IEEE T CIRCUITS-I, vol. 62, pp. 130-138, 2015.
  • [13] E. Saatci, V. Tavsanoglu, “Fingerprint Image Enhancement Using CNN Filtering Techniques”, INT J NEURAL SYST, vol. 13, pp. 453-460, 2003.
  • [14] J. G. Daughman, “Uncertainty Relation for Resolution in Space, Spatial-Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters”, J OPT SOC AM, vol. 2, pp. 1160-1169, 1985.
  • [15] B. E. Shi, “Gabor-type filtering in space and time with Cellular Neural Networks”, IEEE T CIRCUITS-I, vol. 45, pp. 121-132, 1998.
  • [16] C. Rekeczky, “Dynamic spatio-temporal nonlinear filtering and detection on CNN archiecture - theory, modeling and applications”, PhD Thesis, Computer and Automation Institute Hungarian Academy of Sciences, Hungary, 1999.
  • [17] K. Karacs, G. Cserey, A. Zarandy, P. Szolgay, C. Rekeczky, L. Kek, V. Szabo, G. Pazienza, T. Roska, “Software Library for Cellular Wave Computing Engines Version 3.1”, Cellular Sensory and Wave Computing Laboratory of the Computer and Automation Research Inst., Hungarian Academy of Sciences and the Jedlik Laboratories of the Pazmany P. Catholic University, Budapest, Hungary, 2010.
  • [18] K. Nilsson, J. Bigun, “Localization of corresponding points in fingerprints by complex filtering”, PATTERN RECOGN LETT, vol. 24, pp. 2135-2144, 2003.
  • [19] N. K. Jalutharia, “Fingerprint Recognition and Analysis”, MSc Thesis, Thapar University, India, 2010.
  • [20] D. Maltoni, D. Maio, A. K. Jain, S. Prabhakar, “Handbook of fingerprint recognition”, Springer, New York, USA, 2003.
  • [21] The PolyU HRF Database II, Available at: http://www4. comp.polyu.edu.hk/˜biometrics/HRF/HRF_old.htm Accessed 10 May 2017.
  • [22] P. J. Phillips, A. Martin, C. L. Wilson, M. Przybocky, “An introduction to evaluating biometric systems”, COMPUTER, vol. 33, pp. 56-63, 2000.
  • [23] UK Government’s Biometrics Working Group, “Best practices in testing and reporting performance of biometric devices”, v2.01, 2002.
  • [24] D. Maio, D. Maltoni, R. Capelli, J. L. Wayman, A. K. Jain, “Fvc2000: Fingerprint verification competition”, IEEE T PATTERN ANAL, vol. 24, pp. 402-412, 2002.
  • [25] R. Capelli, D. Maio, D. Maltoni, J. L. Wayman, A. K. Jain, “Performance evaluation of fingerprint verification systems”, IEEE T PATTERN ANAL, vol. 28, pp. 3-18, 2006.
  • [26] Q. Zhao, D. Zhang, L. Zhang, N. Luo, “Adaptive fingerprint pore modeling and extraction”, PATTERN RECOGN, vol. 43, pp. 2833-2844, 2010.
  • [27] N. A. Mngenge, “An Adaptive Quality-Based Fingerprints Matching Using Feature Level 2 (Minutiae) and Extended Features (Pores)”, M.Ing Degree Thesis, University of Johannesburg, South Africa, 2013.
Year 2017, Volume: 17 Issue: 2, 3471 - 3479, 27.07.2017

Abstract

References

  • [1] Q. Gao, S. Moschytz, “Fingerprint Feature Extraction Using CNNs”, in Proceedings of European Conference on Circuit Theory and Design 2001, Espoo, Finland, 2001, pp. 28-31.
  • [2] T. Su , Y. Du, Y. Cheng, Y. Su, “Fingerprint Recognition System Using Cellular Neural Network”, in Proceedings of 9th International Workshop on Cellular Neural Networks and their Applications, Hsinchu, Taiwan, 2005, pp. 170-173.
  • [3] I. Kale, R. Abrishambaf, H. Demirel, “A Fully CNN Based Fingerprint Recognition System”, in Proceedings of 11th International Workshop on Cellular Neural Networks and Their Applications, Santiago de Compostela, Spain, 2008, pp. 14-16.
  • [4] L. O. Chua, L. Yang, “Cellular neural networks: Theory”, IEEE T CIRCUITS SYST, vol. 35, pp. 1257-1272, 1988.
  • [5] M. D. Doan, M. Glenser, R. Chakrabaty, M. Heidenreich, S. Cheung, “Realization of a Digital Cellular Neural Network for Image Processing”, in Proceedings of Third International Workshop on Cellular Neural Networks and Their Applications, Rome, Italy, 1994, pp. 85-90.
  • [6] E. Saatci, “Image Processing Using Cellular Neural Networks”, PhD Thesis, London South Bank University, London, UK, 2003.
  • [7] L. O. Chua, L. Yang, “Cellular Neural Networks: Applications”, IEEE T CIRCUITS SYST, vol. 35, pp. 1273-1290, 1988.
  • [8] K. R. Crounce, L. O. Chua, “Methods for Image Processing and Pattern Formation in Cellular Neural Networks: A Tutorial”, IEEE T CIRCUITS-I, vol. 42, pp. 583-601, 1995.
  • [9] Z. Nagy, P. Szolgay, “Configurable multilayer CNN-UM emulator on FPGA”, IEEE T CIRCUITS-I, vol. 50, pp. 774-778, 2003.
  • [10] J. Javier Martinez, F. Javier Toledo, E. Fernandez, J. M. Ferrandez, “A retinomorphic architecture based on discretetime cellular neural networks using reconfigurable computing”, NEUROCOMPUTING, vol. 71, pp. 766-775, 2008.
  • [11] K. Kayaer, V. Tavsanoglu, “A new approach to emulate CNN on FPGAs for real time video processing”, in Proceedings of 11th International Workshop on Cellular Neural Networks and Their Applications, Santiago de Compostela, Spain, 2008, pp. 23-28.
  • [12] N. Yildiz, E. Cesur, K. Kayaer, V. Tavsanoglu, M. Alpay, “Architecture of a Fully Pipelined Real-Time Cellular Neural Network Emulator”, IEEE T CIRCUITS-I, vol. 62, pp. 130-138, 2015.
  • [13] E. Saatci, V. Tavsanoglu, “Fingerprint Image Enhancement Using CNN Filtering Techniques”, INT J NEURAL SYST, vol. 13, pp. 453-460, 2003.
  • [14] J. G. Daughman, “Uncertainty Relation for Resolution in Space, Spatial-Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters”, J OPT SOC AM, vol. 2, pp. 1160-1169, 1985.
  • [15] B. E. Shi, “Gabor-type filtering in space and time with Cellular Neural Networks”, IEEE T CIRCUITS-I, vol. 45, pp. 121-132, 1998.
  • [16] C. Rekeczky, “Dynamic spatio-temporal nonlinear filtering and detection on CNN archiecture - theory, modeling and applications”, PhD Thesis, Computer and Automation Institute Hungarian Academy of Sciences, Hungary, 1999.
  • [17] K. Karacs, G. Cserey, A. Zarandy, P. Szolgay, C. Rekeczky, L. Kek, V. Szabo, G. Pazienza, T. Roska, “Software Library for Cellular Wave Computing Engines Version 3.1”, Cellular Sensory and Wave Computing Laboratory of the Computer and Automation Research Inst., Hungarian Academy of Sciences and the Jedlik Laboratories of the Pazmany P. Catholic University, Budapest, Hungary, 2010.
  • [18] K. Nilsson, J. Bigun, “Localization of corresponding points in fingerprints by complex filtering”, PATTERN RECOGN LETT, vol. 24, pp. 2135-2144, 2003.
  • [19] N. K. Jalutharia, “Fingerprint Recognition and Analysis”, MSc Thesis, Thapar University, India, 2010.
  • [20] D. Maltoni, D. Maio, A. K. Jain, S. Prabhakar, “Handbook of fingerprint recognition”, Springer, New York, USA, 2003.
  • [21] The PolyU HRF Database II, Available at: http://www4. comp.polyu.edu.hk/˜biometrics/HRF/HRF_old.htm Accessed 10 May 2017.
  • [22] P. J. Phillips, A. Martin, C. L. Wilson, M. Przybocky, “An introduction to evaluating biometric systems”, COMPUTER, vol. 33, pp. 56-63, 2000.
  • [23] UK Government’s Biometrics Working Group, “Best practices in testing and reporting performance of biometric devices”, v2.01, 2002.
  • [24] D. Maio, D. Maltoni, R. Capelli, J. L. Wayman, A. K. Jain, “Fvc2000: Fingerprint verification competition”, IEEE T PATTERN ANAL, vol. 24, pp. 402-412, 2002.
  • [25] R. Capelli, D. Maio, D. Maltoni, J. L. Wayman, A. K. Jain, “Performance evaluation of fingerprint verification systems”, IEEE T PATTERN ANAL, vol. 28, pp. 3-18, 2006.
  • [26] Q. Zhao, D. Zhang, L. Zhang, N. Luo, “Adaptive fingerprint pore modeling and extraction”, PATTERN RECOGN, vol. 43, pp. 2833-2844, 2010.
  • [27] N. A. Mngenge, “An Adaptive Quality-Based Fingerprints Matching Using Feature Level 2 (Minutiae) and Extended Features (Pores)”, M.Ing Degree Thesis, University of Johannesburg, South Africa, 2013.
There are 27 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Tuba Celik Mayadaglı This is me

Ertugrul Saatcı

Rifat Edızkan

Publication Date July 27, 2017
Published in Issue Year 2017 Volume: 17 Issue: 2

Cite

APA Mayadaglı, T. C., Saatcı, E., & Edızkan, R. (2017). A CNN Based Rotation Invariant Fingerprint Recognition System. IU-Journal of Electrical & Electronics Engineering, 17(2), 3471-3479.
AMA Mayadaglı TC, Saatcı E, Edızkan R. A CNN Based Rotation Invariant Fingerprint Recognition System. IU-Journal of Electrical & Electronics Engineering. July 2017;17(2):3471-3479.
Chicago Mayadaglı, Tuba Celik, Ertugrul Saatcı, and Rifat Edızkan. “A CNN Based Rotation Invariant Fingerprint Recognition System”. IU-Journal of Electrical & Electronics Engineering 17, no. 2 (July 2017): 3471-79.
EndNote Mayadaglı TC, Saatcı E, Edızkan R (July 1, 2017) A CNN Based Rotation Invariant Fingerprint Recognition System. IU-Journal of Electrical & Electronics Engineering 17 2 3471–3479.
IEEE T. C. Mayadaglı, E. Saatcı, and R. Edızkan, “A CNN Based Rotation Invariant Fingerprint Recognition System”, IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 2, pp. 3471–3479, 2017.
ISNAD Mayadaglı, Tuba Celik et al. “A CNN Based Rotation Invariant Fingerprint Recognition System”. IU-Journal of Electrical & Electronics Engineering 17/2 (July 2017), 3471-3479.
JAMA Mayadaglı TC, Saatcı E, Edızkan R. A CNN Based Rotation Invariant Fingerprint Recognition System. IU-Journal of Electrical & Electronics Engineering. 2017;17:3471–3479.
MLA Mayadaglı, Tuba Celik et al. “A CNN Based Rotation Invariant Fingerprint Recognition System”. IU-Journal of Electrical & Electronics Engineering, vol. 17, no. 2, 2017, pp. 3471-9.
Vancouver Mayadaglı TC, Saatcı E, Edızkan R. A CNN Based Rotation Invariant Fingerprint Recognition System. IU-Journal of Electrical & Electronics Engineering. 2017;17(2):3471-9.