BibTex RIS Cite

WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES

Year 2005, Volume: 5 Issue: 1, 1265 - 1270, 28.12.2011

Abstract

   

References

  • A.Sommerfeld, “Mathematische Theorie der Diffraction”, Math. Ann., Vol.47, pages 317-374, N.Wiener and R.E. Paley,” Fourier Transforms in the Complex Domain”, American Mathematical Society, NY, pages 49-58, 1934.
  • W.Magnus,”Über die Beugung electromagnetische Wellen an einer Halbebene”, Z.Phys., Vol.117, pages 168-179, 1941.
  • J.F. Carlson and A.E. Heins, “The reflection of an electromagnetic plane wave by an infinite set of plates, I”, Quart. Appl. Math., Vol.4, pages 329, 1947.
  • H.Levine and J. Schwinger, “ On the radiation of sound from an unflanged circular pipe”, Phys.Rev., Vol.73, pages 338-406, 1948.
  • P.C.Clemmow, “ A method for the exact solution of a class of two-dimensional diffraction problems”,Proc.Roy.Soc.London,Ser.A, Vol.205, pages 286-308, 1951.
  • D.C. Jones, “A simplifying technique in the solution of a class of diffraction problems”, Quart.J.Math.Oxford (2), Vol.3, pages 189-196, R.A. Hurd, “The Wiener-Hopf-Hilbert method for diffraction problems”, Can.J.Phys., Vol.54, pages 775-780, 1976.
  • E.Lüneburg and R.A.Hurd, “Diffraction by an infinite set of hard and soft parallel half planes”, Can.J.Phys.,Vol.60, pages 1-9, 1982.
  • M. İdemen, “A new method to obtain exact solutions of vector Wiener-Hopf equations”, Z.Angew. Math.Mech., Vol.59, pages 656-658, G.Uzgören and A.Büyükaksoy, First Order Canonical Problems in Geometrical Theory of Diffraction (In Turkish), Yıldız Teknik Üniversitesi Matbaası, Istanbul, 1987.
  • H.Serbest, “Bir Küresel Reflektörün Içinde Yayılan Yüzey Dalgalarının Ayrıttan Saçılması”, Doktora Tezi, İTÜ,1982.
  • A.D. Rawlins and W.E. Williams, “Matrix Wiener-Hopf factorization”, Quart. J.Mech. Appl. Math., Vol.34, pages 1-8, 1981.
  • K.Kobayashi, “The Wiener-Hopf Technique and Its Applications to Diffraction Problems Involving two Dimensional Obstacles with Finite Cross Section”, Lecture Notes for the short course given at Department of Electrical and Electronics Engineering,, Adana, Turkey, 1993.
  • M.İdemen, “Diffraction Theory”, Lecture Notes, Istanbul Technical University, 1992.
  • A.Büyükaksoy and E.Erdoğan, “Mixed Boundary Value Problems”, Lecture Notes, Istanbul Technical University, 1992.
Year 2005, Volume: 5 Issue: 1, 1265 - 1270, 28.12.2011

Abstract

References

  • A.Sommerfeld, “Mathematische Theorie der Diffraction”, Math. Ann., Vol.47, pages 317-374, N.Wiener and R.E. Paley,” Fourier Transforms in the Complex Domain”, American Mathematical Society, NY, pages 49-58, 1934.
  • W.Magnus,”Über die Beugung electromagnetische Wellen an einer Halbebene”, Z.Phys., Vol.117, pages 168-179, 1941.
  • J.F. Carlson and A.E. Heins, “The reflection of an electromagnetic plane wave by an infinite set of plates, I”, Quart. Appl. Math., Vol.4, pages 329, 1947.
  • H.Levine and J. Schwinger, “ On the radiation of sound from an unflanged circular pipe”, Phys.Rev., Vol.73, pages 338-406, 1948.
  • P.C.Clemmow, “ A method for the exact solution of a class of two-dimensional diffraction problems”,Proc.Roy.Soc.London,Ser.A, Vol.205, pages 286-308, 1951.
  • D.C. Jones, “A simplifying technique in the solution of a class of diffraction problems”, Quart.J.Math.Oxford (2), Vol.3, pages 189-196, R.A. Hurd, “The Wiener-Hopf-Hilbert method for diffraction problems”, Can.J.Phys., Vol.54, pages 775-780, 1976.
  • E.Lüneburg and R.A.Hurd, “Diffraction by an infinite set of hard and soft parallel half planes”, Can.J.Phys.,Vol.60, pages 1-9, 1982.
  • M. İdemen, “A new method to obtain exact solutions of vector Wiener-Hopf equations”, Z.Angew. Math.Mech., Vol.59, pages 656-658, G.Uzgören and A.Büyükaksoy, First Order Canonical Problems in Geometrical Theory of Diffraction (In Turkish), Yıldız Teknik Üniversitesi Matbaası, Istanbul, 1987.
  • H.Serbest, “Bir Küresel Reflektörün Içinde Yayılan Yüzey Dalgalarının Ayrıttan Saçılması”, Doktora Tezi, İTÜ,1982.
  • A.D. Rawlins and W.E. Williams, “Matrix Wiener-Hopf factorization”, Quart. J.Mech. Appl. Math., Vol.34, pages 1-8, 1981.
  • K.Kobayashi, “The Wiener-Hopf Technique and Its Applications to Diffraction Problems Involving two Dimensional Obstacles with Finite Cross Section”, Lecture Notes for the short course given at Department of Electrical and Electronics Engineering,, Adana, Turkey, 1993.
  • M.İdemen, “Diffraction Theory”, Lecture Notes, Istanbul Technical University, 1992.
  • A.Büyükaksoy and E.Erdoğan, “Mixed Boundary Value Problems”, Lecture Notes, Istanbul Technical University, 1992.
There are 13 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Osman Yıldırım This is me

Publication Date December 28, 2011
Published in Issue Year 2005 Volume: 5 Issue: 1

Cite

APA Yıldırım, O. (2011). WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES. IU-Journal of Electrical & Electronics Engineering, 5(1), 1265-1270.
AMA Yıldırım O. WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES. IU-Journal of Electrical & Electronics Engineering. December 2011;5(1):1265-1270.
Chicago Yıldırım, Osman. “WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES”. IU-Journal of Electrical & Electronics Engineering 5, no. 1 (December 2011): 1265-70.
EndNote Yıldırım O (December 1, 2011) WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES. IU-Journal of Electrical & Electronics Engineering 5 1 1265–1270.
IEEE O. Yıldırım, “WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES”, IU-Journal of Electrical & Electronics Engineering, vol. 5, no. 1, pp. 1265–1270, 2011.
ISNAD Yıldırım, Osman. “WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES”. IU-Journal of Electrical & Electronics Engineering 5/1 (December 2011), 1265-1270.
JAMA Yıldırım O. WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES. IU-Journal of Electrical & Electronics Engineering. 2011;5:1265–1270.
MLA Yıldırım, Osman. “WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES”. IU-Journal of Electrical & Electronics Engineering, vol. 5, no. 1, 2011, pp. 1265-70.
Vancouver Yıldırım O. WIENER-HOPF TECHNIQUE AND SOME SPECIAL GEOMETRIES. IU-Journal of Electrical & Electronics Engineering. 2011;5(1):1265-70.