Review
BibTex RIS Cite
Year 2021, Volume: 51 Issue: 2, 277 - 282, 31.08.2021

Abstract

References

  • • Al-Karawi, C., Cech, T., Bang, F., & Leopold, C. S. (2018). Investigation of the tableting behavior of Ibuprofen DC 85 W. Drug Development and Industrial Pharmacy, 44(8), 1262–1272.
  • • Arida, A. I., & Al-Tabakha, M. M. (2008). Cellactose® a co-processed excipient: A comparison study. Pharmaceutical Development and Technology, 13(2), 165–175.
  • • Busignies, V., Leclerc, B., Porion, P., Evesque, P., Couarraze, G., & Tchoreloff, P. (2006). Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. European Journal of Pharmaceutics and Biopharmaceutics, 64(1), 66–74.
  • • Busignies, V., Mazel, V., Diarra, H., & Tchoreloff, P. (2012). Prediction of the compressibility of complex mixtures of pharmaceutical powders. International Journal of Pharmaceutics, 436(1-2), 862–868.
  • • Çelik, M. (Ed.). (2016). Pharmaceutical powder compaction technology. CRC Press, Florida, USA.
  • • Çelik, M., & Marshall, K. (1989). Use of a compaction simulator system in tabletting research. Drug Development and Industrial Pharmacy, 15(5), 759–800.
  • • De Blaey, C. J., & Polderman, J. (1971). Compression of pharmaceuticals. II. Registration and determination of force-displacement curves, using a small digital computer. Pharmaceutisch weekblad, 106(8), 57–65.
  • • Dudhat, S. M., Kettler, C. N., & Dave, R. H. (2017). To study capping or lamination tendency of tablets through evaluation of powder rheological properties and tablet mechanical properties of directly compressible blends. Aaps Pharmscitech, 18(4), 1177–1189.
  • • Fell, J. T., & Newton, J. M. (1970). Determination of tablet strength by the diametral-compression test. Journal of Pharmaceutical Sciences, 59(5), 688–691.
  • • Heckel, R. W. (1961). Density-pressure relationships in powder compaction. Trans Metall Soc AIME, 221(4), 671–675.
  • • Heinz, R., Wolf, H., Schuchmann, H., End, L., & Kolter, K. (2000). Formulation and development of tablets based on Ludipress and scale-up from laboratory to production scale. Drug Development and Industrial Pharmacy, 26(5), 513–521.
  • • Hoblitzell, J. R., & Rhodes, C. T. (1990). Determination of a relationship between force-displacement and force-time compression curves. Drug Development and Industrial Pharmacy, 16(2), 201–229.
  • • Jain, S. (1999). Mechanical properties of powders for compaction and tableting: an overview. Pharmaceutical Science & Technology Today, 2(1), 20–31.
  • • Jiwa, N. (2020). Use of compaction simulator to observe the effect of co-processed lactose-based fillers and lubricants on directly compressible ibuprofen by quality by design (QBD) approach (Doctoral dissertation) Near East University, TRNC.
  • • Jiwa, N., Aksu, B., Ozalp, Y. (2020). Investigation of Lubricant Effect on Ibuprofen DC and Co-Processed Lactose-Based Excipients; Pre-formulation Studies Using a Simulator. Fourrages Journal, 244(11), 1–15.
  • • Khan, K. A., & Rhodes, C. T. (1976). Effect of variation in compaction force on properties of six direct compression tablet formulations. Journal of Pharmaceutical Sciences, 65(12), 1835–1837.
  • • Leitritz, M., Krumme, M., & Schmidt, P. C. (1996). Force-time curves of a rotary tablet press. Interpretation of the compressibility of a modified starch containing various amounts of moisture. Journal of Pharmacy and Pharmacology, 48(5), 456–462.
  • • Medelpharm Instruments, Retrieved from https://www.medelpharm. com/instruments/instruments-home.html (07.04.2012).
  • • Michaut, F., Busignies, V., Fouquereau, C., De Barochez, B. H., Leclerc, B., & Tchoreloff, P. (2010). Evaluation of a rotary tablet press simulator as a tool for the characterization of compaction properties of pharmaceutical products. Journal of Pharmaceutical Sciences, 99(6), 2874–2885.
  • • Mohan, S. (2012). Compression physics of pharmaceutical powders: A review. International Journal of Pharmaceutical Sciences and Research, 3(6), 1580.
  • • Moulin, A., Kowalski L., (2016). Compaction Simulation/Industrial Press Correlation: Two Case Studies. ONdrugDelivery Magazine, Issue 99, pp 24-27. https://www.ondrugdelivery.com/compactionsimulation- industrial-press-correlation-two-case-studies/
  • • Muzíková, J., & Zvolánková, J. (2007). A study of the properties of tablets from coprocessed dry binders composed of alpha-lactose monohydrate and different types of cellulose. Ceska a Slovenska farmacie: casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti, 56(6), 269–275.
  • • Natoli, D., Levin, M., Tsygan, L., & Liu, L. (2017). Development, optimization, and scale-up of process parameters: tablet compression. In Developing Solid Oral Dosage Forms (pp. 917-951). Academic Press. Cambridge, USA.
  • • Newton, J. M., & Grant, D. J. W. (1974). The relation between the compaction pressure, porosity and tensile strength of compacted powders. Powder Technology, 9(5-6), 295–297.
  • • Nordström, J., Persson, A. S., Lazorova, L., Frenning, G., & Alderborn, G. (2013). The degree of compression of spherical granular solids controls the evolution of microstructure and bond probability during compaction. International Journal of Pharmaceutics, 442(1-2), 3–12.
  • • Ozalp, Y., Chunu, J. T., & Jiwa, N. (2020). Investigation of the Compressibility Characteristics of Paracetamol using "Compaction Simulator". Turkish Journal of Pharmaceutical Sciences, 17(3), 249– 254.
  • • Ozalp, Y., Onayo, M. M., & Jiwa, N. (2020). Evaluation of Lactose- Based Direct Tableting Agents' Compressibility Behavior Using a Compaction Simulator. Turkish Journal of Pharmaceutical Sciences, 17(4), 367–372.
  • • Paul, S., & Sun, C. C. (2018). Systematic evaluation of common lubricants for optimal use in tablet formulation. European Journal of Pharmaceutical Sciences, 117, 118–127.
  • • Picker, K. M. (2000). A new theoretical model to characterize the densification behavior of tableting materials. European Journal of Pharmaceutics and Biopharmaceutics, 49(3), 267–273.
  • • Ragnarsson, G., & Sjögren, J. (1985). Force‐displacement measurements in tableting. Journal of Pharmacy and Pharmacology, 37(3), 145–150.
  • • Ruegger, C. E., & Celik, M. (2016). Advanced compaction research equipment: Compaction simulators. Pharmaceutical Powder Compaction Technology, 2nd ed.(Celik, M., Ed.), 99–128.
  • • Salpekar, A. M., & Augsburger, L. L. (1974). Magnesium lauryl sulfate in tableting: effect on ejection force and compressibility. Journal of Pharmaceutical Sciences, 63(2), 289–293.
  • • Sun, C. C. (2015). Dependence of ejection force on tableting speed—A compaction simulation study. Powder Technology, 279, 123– 126.
  • • Sun, C., & Grant, D. J. (2001). Influence of elastic deformation of particles on Heckel analysis. Pharmaceutical Development and Technology, 6(2), 193–200.
  • • Tye, C. K., Sun, C. C., & Amidon, G. E. (2005). Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. Journal of Pharmaceutical Sciences, 94(3), 465–472.
  • • Van der Voort Maarschalk, K., & Bolhuls, G. (1999). Improving properties of materials for direct compaction. Pharmaceutical Technology, 23(5), 34–46.
  • • Van Veen, B., Van der Voort Maarschalk, K., Bolhuis, G. K., Zuurman, K., & Frijlink, H. W. (2000). Tensile strength of tablets containing two materials with a different compaction behaviour. International Journal of Pharmaceutics, 203(1-2), 71–79.
  • • Wang, J., Wen, H., & Desai, D. (2010). Lubrication in tablet formulations. European Journal of Pharmaceutics and Biopharmaceutics, 75(1), 1–15.
  • • Wünsch, I., Friesen, I., Puckhaber, D., Schlegel, T., & Finke, J. H. (2020). Scaling tableting processes from compaction simulator to rotary presses—Mind the sub-processes. Pharmaceutics, 12(4), 310.
  • • York, P., & Pilpel, N. (1973). The tensile strength and compression behaviour of lactose, four fatty acids, and their mixtures in relation to tableting. The Journal of Pharmacy and Pharmacology, 25, 1–11.

The role of compaction simulator equipment in formulation design

Year 2021, Volume: 51 Issue: 2, 277 - 282, 31.08.2021

Abstract

The assessment of the compaction performances of pharmaceutical powders is an important aspect of tablet product design, development and manufacturing. Compaction simulators have potential applications in pharmaceutical research and development in terms of studying basic compaction mechanisms, troubleshooting, various process variables, compaction data library creation, scale-up parameters, and fingerprinting of new active pharmaceutical ingredients (APIs) or excipients. The upscaling of the compaction process between early R&D and production can be time-consuming and costly, resulting in a long time-to-market and shorter commercial lifecycles. Due to the limited availability and high price of a new APIs during early drug development phases, compaction simulators have proven highly valuable as the dwell time and punch speed can be set accurately to mimic bottom and upper punch movement on a rotary tablet press. Many issues inherent in the formula ingredients or acquired from previous processes can be avoided or reduced if applied correctly. However, if adequate attention is not paid to understanding the compaction behaviour of what is being pressed, this process may also be the source of several other problems. Pharmaceutical scientists now use a variety of instrumented presses to produce robust tablet formulations. They allow scientists to conduct experiments for in-depth analysis of compaction characteristics of pharmaceutical materials with great efficiency in terms of time, expense, and knowledge gained. The ability to use simulators for anything from early formulation studies to manufacturing troubleshooting makes them invaluable, particularly in light of the recent Process Analytical Technology (PAT)/Ouality by design (QbD) phenomenon.

References

  • • Al-Karawi, C., Cech, T., Bang, F., & Leopold, C. S. (2018). Investigation of the tableting behavior of Ibuprofen DC 85 W. Drug Development and Industrial Pharmacy, 44(8), 1262–1272.
  • • Arida, A. I., & Al-Tabakha, M. M. (2008). Cellactose® a co-processed excipient: A comparison study. Pharmaceutical Development and Technology, 13(2), 165–175.
  • • Busignies, V., Leclerc, B., Porion, P., Evesque, P., Couarraze, G., & Tchoreloff, P. (2006). Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients. European Journal of Pharmaceutics and Biopharmaceutics, 64(1), 66–74.
  • • Busignies, V., Mazel, V., Diarra, H., & Tchoreloff, P. (2012). Prediction of the compressibility of complex mixtures of pharmaceutical powders. International Journal of Pharmaceutics, 436(1-2), 862–868.
  • • Çelik, M. (Ed.). (2016). Pharmaceutical powder compaction technology. CRC Press, Florida, USA.
  • • Çelik, M., & Marshall, K. (1989). Use of a compaction simulator system in tabletting research. Drug Development and Industrial Pharmacy, 15(5), 759–800.
  • • De Blaey, C. J., & Polderman, J. (1971). Compression of pharmaceuticals. II. Registration and determination of force-displacement curves, using a small digital computer. Pharmaceutisch weekblad, 106(8), 57–65.
  • • Dudhat, S. M., Kettler, C. N., & Dave, R. H. (2017). To study capping or lamination tendency of tablets through evaluation of powder rheological properties and tablet mechanical properties of directly compressible blends. Aaps Pharmscitech, 18(4), 1177–1189.
  • • Fell, J. T., & Newton, J. M. (1970). Determination of tablet strength by the diametral-compression test. Journal of Pharmaceutical Sciences, 59(5), 688–691.
  • • Heckel, R. W. (1961). Density-pressure relationships in powder compaction. Trans Metall Soc AIME, 221(4), 671–675.
  • • Heinz, R., Wolf, H., Schuchmann, H., End, L., & Kolter, K. (2000). Formulation and development of tablets based on Ludipress and scale-up from laboratory to production scale. Drug Development and Industrial Pharmacy, 26(5), 513–521.
  • • Hoblitzell, J. R., & Rhodes, C. T. (1990). Determination of a relationship between force-displacement and force-time compression curves. Drug Development and Industrial Pharmacy, 16(2), 201–229.
  • • Jain, S. (1999). Mechanical properties of powders for compaction and tableting: an overview. Pharmaceutical Science & Technology Today, 2(1), 20–31.
  • • Jiwa, N. (2020). Use of compaction simulator to observe the effect of co-processed lactose-based fillers and lubricants on directly compressible ibuprofen by quality by design (QBD) approach (Doctoral dissertation) Near East University, TRNC.
  • • Jiwa, N., Aksu, B., Ozalp, Y. (2020). Investigation of Lubricant Effect on Ibuprofen DC and Co-Processed Lactose-Based Excipients; Pre-formulation Studies Using a Simulator. Fourrages Journal, 244(11), 1–15.
  • • Khan, K. A., & Rhodes, C. T. (1976). Effect of variation in compaction force on properties of six direct compression tablet formulations. Journal of Pharmaceutical Sciences, 65(12), 1835–1837.
  • • Leitritz, M., Krumme, M., & Schmidt, P. C. (1996). Force-time curves of a rotary tablet press. Interpretation of the compressibility of a modified starch containing various amounts of moisture. Journal of Pharmacy and Pharmacology, 48(5), 456–462.
  • • Medelpharm Instruments, Retrieved from https://www.medelpharm. com/instruments/instruments-home.html (07.04.2012).
  • • Michaut, F., Busignies, V., Fouquereau, C., De Barochez, B. H., Leclerc, B., & Tchoreloff, P. (2010). Evaluation of a rotary tablet press simulator as a tool for the characterization of compaction properties of pharmaceutical products. Journal of Pharmaceutical Sciences, 99(6), 2874–2885.
  • • Mohan, S. (2012). Compression physics of pharmaceutical powders: A review. International Journal of Pharmaceutical Sciences and Research, 3(6), 1580.
  • • Moulin, A., Kowalski L., (2016). Compaction Simulation/Industrial Press Correlation: Two Case Studies. ONdrugDelivery Magazine, Issue 99, pp 24-27. https://www.ondrugdelivery.com/compactionsimulation- industrial-press-correlation-two-case-studies/
  • • Muzíková, J., & Zvolánková, J. (2007). A study of the properties of tablets from coprocessed dry binders composed of alpha-lactose monohydrate and different types of cellulose. Ceska a Slovenska farmacie: casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti, 56(6), 269–275.
  • • Natoli, D., Levin, M., Tsygan, L., & Liu, L. (2017). Development, optimization, and scale-up of process parameters: tablet compression. In Developing Solid Oral Dosage Forms (pp. 917-951). Academic Press. Cambridge, USA.
  • • Newton, J. M., & Grant, D. J. W. (1974). The relation between the compaction pressure, porosity and tensile strength of compacted powders. Powder Technology, 9(5-6), 295–297.
  • • Nordström, J., Persson, A. S., Lazorova, L., Frenning, G., & Alderborn, G. (2013). The degree of compression of spherical granular solids controls the evolution of microstructure and bond probability during compaction. International Journal of Pharmaceutics, 442(1-2), 3–12.
  • • Ozalp, Y., Chunu, J. T., & Jiwa, N. (2020). Investigation of the Compressibility Characteristics of Paracetamol using "Compaction Simulator". Turkish Journal of Pharmaceutical Sciences, 17(3), 249– 254.
  • • Ozalp, Y., Onayo, M. M., & Jiwa, N. (2020). Evaluation of Lactose- Based Direct Tableting Agents' Compressibility Behavior Using a Compaction Simulator. Turkish Journal of Pharmaceutical Sciences, 17(4), 367–372.
  • • Paul, S., & Sun, C. C. (2018). Systematic evaluation of common lubricants for optimal use in tablet formulation. European Journal of Pharmaceutical Sciences, 117, 118–127.
  • • Picker, K. M. (2000). A new theoretical model to characterize the densification behavior of tableting materials. European Journal of Pharmaceutics and Biopharmaceutics, 49(3), 267–273.
  • • Ragnarsson, G., & Sjögren, J. (1985). Force‐displacement measurements in tableting. Journal of Pharmacy and Pharmacology, 37(3), 145–150.
  • • Ruegger, C. E., & Celik, M. (2016). Advanced compaction research equipment: Compaction simulators. Pharmaceutical Powder Compaction Technology, 2nd ed.(Celik, M., Ed.), 99–128.
  • • Salpekar, A. M., & Augsburger, L. L. (1974). Magnesium lauryl sulfate in tableting: effect on ejection force and compressibility. Journal of Pharmaceutical Sciences, 63(2), 289–293.
  • • Sun, C. C. (2015). Dependence of ejection force on tableting speed—A compaction simulation study. Powder Technology, 279, 123– 126.
  • • Sun, C., & Grant, D. J. (2001). Influence of elastic deformation of particles on Heckel analysis. Pharmaceutical Development and Technology, 6(2), 193–200.
  • • Tye, C. K., Sun, C. C., & Amidon, G. E. (2005). Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. Journal of Pharmaceutical Sciences, 94(3), 465–472.
  • • Van der Voort Maarschalk, K., & Bolhuls, G. (1999). Improving properties of materials for direct compaction. Pharmaceutical Technology, 23(5), 34–46.
  • • Van Veen, B., Van der Voort Maarschalk, K., Bolhuis, G. K., Zuurman, K., & Frijlink, H. W. (2000). Tensile strength of tablets containing two materials with a different compaction behaviour. International Journal of Pharmaceutics, 203(1-2), 71–79.
  • • Wang, J., Wen, H., & Desai, D. (2010). Lubrication in tablet formulations. European Journal of Pharmaceutics and Biopharmaceutics, 75(1), 1–15.
  • • Wünsch, I., Friesen, I., Puckhaber, D., Schlegel, T., & Finke, J. H. (2020). Scaling tableting processes from compaction simulator to rotary presses—Mind the sub-processes. Pharmaceutics, 12(4), 310.
  • • York, P., & Pilpel, N. (1973). The tensile strength and compression behaviour of lactose, four fatty acids, and their mixtures in relation to tableting. The Journal of Pharmacy and Pharmacology, 25, 1–11.
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Review
Authors

Yıldız Özalp 0000-0001-7928-1666

Nailla Jiwa This is me 0000-0002-5594-2383

Publication Date August 31, 2021
Submission Date April 9, 2021
Published in Issue Year 2021 Volume: 51 Issue: 2

Cite

APA Özalp, Y., & Jiwa, N. (2021). The role of compaction simulator equipment in formulation design. İstanbul Journal of Pharmacy, 51(2), 277-282.
AMA Özalp Y, Jiwa N. The role of compaction simulator equipment in formulation design. iujp. August 2021;51(2):277-282.
Chicago Özalp, Yıldız, and Nailla Jiwa. “The Role of Compaction Simulator Equipment in Formulation Design”. İstanbul Journal of Pharmacy 51, no. 2 (August 2021): 277-82.
EndNote Özalp Y, Jiwa N (August 1, 2021) The role of compaction simulator equipment in formulation design. İstanbul Journal of Pharmacy 51 2 277–282.
IEEE Y. Özalp and N. Jiwa, “The role of compaction simulator equipment in formulation design”, iujp, vol. 51, no. 2, pp. 277–282, 2021.
ISNAD Özalp, Yıldız - Jiwa, Nailla. “The Role of Compaction Simulator Equipment in Formulation Design”. İstanbul Journal of Pharmacy 51/2 (August 2021), 277-282.
JAMA Özalp Y, Jiwa N. The role of compaction simulator equipment in formulation design. iujp. 2021;51:277–282.
MLA Özalp, Yıldız and Nailla Jiwa. “The Role of Compaction Simulator Equipment in Formulation Design”. İstanbul Journal of Pharmacy, vol. 51, no. 2, 2021, pp. 277-82.
Vancouver Özalp Y, Jiwa N. The role of compaction simulator equipment in formulation design. iujp. 2021;51(2):277-82.