Research Article
BibTex RIS Cite

Yapay Zeka Tabanlı Uygulamalar İle Sipariş Gecikmesi Tahmini

Year 2023, , 22 - 27, 31.12.2023
https://doi.org/10.56203/iyd.1375921

Abstract

Dünyada son yirmi yılda yaşanan dijitalleşme akımı ile beraber iş süreçleri başkalaşmaya başlamıştır. Geleneksel işletme yaklaşımından ayrılarak, teknolojinin her bir alanda kullanılmaya başlanması iş süreçlerini ve una bağlı olarak yöneticilerin yaklaşımını değiştirmiştir. Bir diğer yandan son sanayi devriminin getirdiği bulut bilişim, nesnelerin interneti, sensörler ve bu bileşenler aracılığıyla anlık bildirim sistemleri tedarik zincirlerini akıllı bir yapıya dönüştürmüştür. Artık bir tedarik zincirinin son halkası olan perakendecinin satmış olduğu bir ürünün stoklardan düşme bilgisi, zincirin ilk halkasındaki hammadde tedarikçisine kadar iletilmektedir. Bu yol ile kusursuz bir tedarik zinciri yapısı oluşmakta, yalın çalışma prensiplerinde işlemler yapılmaktadır. Perakendecinin stoklarının azalmasına göre hazırlanan ürünler devamlı bir şekilde temin edilmekte, bu durumda kusursuz çalışmayı göstermektedir. Bir diğer yandan, sensörler ve nesnelerin interneti gibi dijital bileşenler aracılığıyla iş akışlarında yer alan her bir adım anlık olarak verilere dönüştürülerek, bulut bilişim denilen sanal ortamlarda depolanmaktadır. Bu noktada ortaya çıkan verileri depolama ve güvenliği probleminin yanında asıl sorun, söz konusu verileri anlamlı hale getirecek şekilde işleyebilmektedir. Yapay zeka tabanlı bileşenler ve sistemler tarafından üretilen büyük verilerin analiz edilmesi de yapay zeka tabanlı sistemler ile mümkün olmaktadır. Bu durum için makine öğrenmesi olarak isimlendirilen yöntemler geliştirilmiştir ve günümüzde gitgide uygulama alanı artmaktadır. Bu bilgiler ışığında, çalışma kapsamında bir işletmenin ürettiği ürünlere müşterilerinden gelen geçmiş sipariş verileri kullanılarak gelecek dönemlere dair sipariş miktarı gecikmelerine dair tahminleri makine öğrenmesi algoritmaları kullanılarak analiz edilmiştir. Microsoft Azure Machine Learning Studio platformu aracılığıyla yapılan analiz sonuçları, makine öğrenmesinin uygulama örneklerinin artırılmasının yanında sektöre dijital araçların kullanılması konusunda katkı sağlayacaktır. Yapılan analizler neticesinde elde edilen sonuçlara göre işletmeye öneriler geliştirilmiştir. Son olarak ise makine öğrenmesinin işletmecilik alanında uygulanmasına dair öneriler sunulmuştur.

References

  • Abbasi B, Babaei T, Hosseinifard Z, Smith-Miles K & Dehghani M (2020). Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management. Computers & Operations Research, 119, 104941.
  • Brewer PC (2000). An approach to organizing a management accounting curriculum. Issues in accounting education, 15(2), 211-235.
  • Chaharsooghi, S. K., Heydari, J., & Zegordi, S. H. (2008). A reinforcement learning model for supply chain ordering management: An application to the beer game. Decision Support Systems, 45(4), 949-959.
  • Dey A, Singh J & Singh N (2016). Analysis of supervised machine learning algorithms for heart disease prediction with reduced number of attributes using principal component analysis. International Journal of Computer Applications, 140(2), 27-31.
  • Erdal H & Yaprakli TS (2016). Firm failure prediction: A case study based on machine learning. International Journal of Informatics Technologies, 9(1), 21-31.
  • Fox C (2018). Bayesian inference. Data Science for Transport: A Self-Study Guide with Computer Exercises, 75-92.
  • Gupta A, Baid P & Chaplot N (2017). Sentiment analysis of movie reviews using machine learning techniques. International Journal of Computer Applications, 179(7), 45-49.
  • Gültepe Y (2019). Makine öğrenmesi algoritmaları ile hava kirliliği tahmini üzerine karşılaştırmalı bir değerlendirme. Avrupa Bilim ve Teknoloji Dergisi, (16), 8-15.
  • Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, ... & Ramkumar PN (2020). Machine learning and artificial intelligence: definitions, applications, and future directions. Current reviews in musculoskeletal medicine, 13, 69-76.Hinton, 2013
  • Hong, H. K., Ha, S. H., Shin, C. K., Park, S. C., & Kim, S. H. (1999). Evaluating the efficiency of system integration projects using data envelopment analysis (DEA) and machine learning. Expert Systems with Applications, 16(3), 283-296.
  • Jomthanachai, S., Wong, W. P., & Lim, C. P. (2021). An application of data envelopment analysis and machine learning approach to risk management. Ieee Access, 9, 85978-85994.
  • Kagermann, H., Österle, H., & Jordan, J. M. (2010). IT-driven business models. Global Case Studies.
  • Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I & Chouvarda I (2017). Machine learning and data mining methods in diabetes research. Computational and structural biotechnology journal, 15, 104-116.
  • Kaynar O, Görmez Y, Yıldız M & Albayrak A (2016). Makine öğrenmesi yöntemleri ile Duygu Analizi. In International Artificial Intelligence and Data Processing Symposium (IDAP'16) (Vol. 17, No. 18, pp. 17-18).
  • Kilimci, Z. H., Akyuz, A. O., Uysal, M., Akyokus, S., Uysal, M. O., Atak Bulbul, B., & Ekmis, M. A. (2019). An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain. Complexity, 2019.
  • Kumar B, Vyas OP & Vyas R (2019). A comprehensive review on the variants of support vector machines. Modern Physics Letters B, 33(25), 1950303.
  • Moor JH (2006). The nature, importance, and difficulty of machine ethics. IEEE intelligent systems, 21(4), 18-21.
  • Myers RH, Montgomery DC, Vining GG & Robinson TJ (2012). Generalized linear models: with applications in engineering and the sciences. John Wiley & Sons.
  • Samuel AL (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), 210-229.
  • Say, C. (2018). 50 Soruda yapay zekâ. Bilim ve Gelecek Kitaplığı.
  • Sevli O (2019). Göğüs kanseri teşhisinde farklı makine öğrenmesi tekniklerinin performans karşılaştırması. Avrupa Bilim ve Teknoloji Dergisi, (16), 176-185.
  • Shahbazi Z & Byun YC (2020). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics, 10(1), 41.
  • Zhang Z, Gao M, Yu G, Arık SÖ, Davis LS & Pfister T (2020). Consistency-based semi-supervised active learning: Towards minimizing labeling cost. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16 (pp. 510-526). Springer International Publishing.
  • Zhou J, Zhang Q & Li X (2021). Fuzzy factorization machine. Information Sciences, 546, 1135-1147.

Forecasting Order Delays with Artificial Intelligence-Based Applications

Year 2023, , 22 - 27, 31.12.2023
https://doi.org/10.56203/iyd.1375921

Abstract

The digitalization trend in the world in the last two decades has begun to transform business processes. Departing from the traditional business approach, the use of technology in every field has changed business processes and, accordingly, the approach of managers. On the other hand, cloud computing, the internet of things, sensors and instant notification systems through these components brought by the last industrial revolution have transformed supply chains into a smart structure. Now, the information that a product sold by a retailer, which is the last link of a supply chain, is out of stock is transmitted to the raw material supplier in the first link of the chain. In this way, a perfect supply chain structure is formed and operations are carried out in lean working principles. The products prepared according to the reduction of the retailer's stocks are continuously supplied, which shows flawless operation. On the other hand, through digital components such as sensors and the Internet of Things, each step in workflows is instantly converted into data and stored in virtual environments called cloud computing. At this point, besides the problem of data storage and security, the main problem is to process the data in a meaningful way. Analyzing big data generated by AI-based components and systems is also possible with AI-based systems. Methods called machine learning have been developed for this situation and their application area is increasing day by day. In the light of this information, within the scope of the study, forecasts of order quantity delays for future periods using historical order data from customers for the products produced by an enterprise were analyzed using machine learning algorithms. The results of the analysis made through the Microsoft Azure Machine Learning Studio platform will contribute to the use of digital tools in the sector as well as increasing the application examples of machine learning. According to the results obtained as a result of the analyzes, recommendations were developed for the enterprise. Finally, suggestions for the application of machine learning in the field of business administration are presented.

References

  • Abbasi B, Babaei T, Hosseinifard Z, Smith-Miles K & Dehghani M (2020). Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management. Computers & Operations Research, 119, 104941.
  • Brewer PC (2000). An approach to organizing a management accounting curriculum. Issues in accounting education, 15(2), 211-235.
  • Chaharsooghi, S. K., Heydari, J., & Zegordi, S. H. (2008). A reinforcement learning model for supply chain ordering management: An application to the beer game. Decision Support Systems, 45(4), 949-959.
  • Dey A, Singh J & Singh N (2016). Analysis of supervised machine learning algorithms for heart disease prediction with reduced number of attributes using principal component analysis. International Journal of Computer Applications, 140(2), 27-31.
  • Erdal H & Yaprakli TS (2016). Firm failure prediction: A case study based on machine learning. International Journal of Informatics Technologies, 9(1), 21-31.
  • Fox C (2018). Bayesian inference. Data Science for Transport: A Self-Study Guide with Computer Exercises, 75-92.
  • Gupta A, Baid P & Chaplot N (2017). Sentiment analysis of movie reviews using machine learning techniques. International Journal of Computer Applications, 179(7), 45-49.
  • Gültepe Y (2019). Makine öğrenmesi algoritmaları ile hava kirliliği tahmini üzerine karşılaştırmalı bir değerlendirme. Avrupa Bilim ve Teknoloji Dergisi, (16), 8-15.
  • Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, ... & Ramkumar PN (2020). Machine learning and artificial intelligence: definitions, applications, and future directions. Current reviews in musculoskeletal medicine, 13, 69-76.Hinton, 2013
  • Hong, H. K., Ha, S. H., Shin, C. K., Park, S. C., & Kim, S. H. (1999). Evaluating the efficiency of system integration projects using data envelopment analysis (DEA) and machine learning. Expert Systems with Applications, 16(3), 283-296.
  • Jomthanachai, S., Wong, W. P., & Lim, C. P. (2021). An application of data envelopment analysis and machine learning approach to risk management. Ieee Access, 9, 85978-85994.
  • Kagermann, H., Österle, H., & Jordan, J. M. (2010). IT-driven business models. Global Case Studies.
  • Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I & Chouvarda I (2017). Machine learning and data mining methods in diabetes research. Computational and structural biotechnology journal, 15, 104-116.
  • Kaynar O, Görmez Y, Yıldız M & Albayrak A (2016). Makine öğrenmesi yöntemleri ile Duygu Analizi. In International Artificial Intelligence and Data Processing Symposium (IDAP'16) (Vol. 17, No. 18, pp. 17-18).
  • Kilimci, Z. H., Akyuz, A. O., Uysal, M., Akyokus, S., Uysal, M. O., Atak Bulbul, B., & Ekmis, M. A. (2019). An improved demand forecasting model using deep learning approach and proposed decision integration strategy for supply chain. Complexity, 2019.
  • Kumar B, Vyas OP & Vyas R (2019). A comprehensive review on the variants of support vector machines. Modern Physics Letters B, 33(25), 1950303.
  • Moor JH (2006). The nature, importance, and difficulty of machine ethics. IEEE intelligent systems, 21(4), 18-21.
  • Myers RH, Montgomery DC, Vining GG & Robinson TJ (2012). Generalized linear models: with applications in engineering and the sciences. John Wiley & Sons.
  • Samuel AL (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3(3), 210-229.
  • Say, C. (2018). 50 Soruda yapay zekâ. Bilim ve Gelecek Kitaplığı.
  • Sevli O (2019). Göğüs kanseri teşhisinde farklı makine öğrenmesi tekniklerinin performans karşılaştırması. Avrupa Bilim ve Teknoloji Dergisi, (16), 176-185.
  • Shahbazi Z & Byun YC (2020). A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics, 10(1), 41.
  • Zhang Z, Gao M, Yu G, Arık SÖ, Davis LS & Pfister T (2020). Consistency-based semi-supervised active learning: Towards minimizing labeling cost. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16 (pp. 510-526). Springer International Publishing.
  • Zhou J, Zhang Q & Li X (2021). Fuzzy factorization machine. Information Sciences, 546, 1135-1147.
There are 24 citations in total.

Details

Primary Language English
Subjects Statistics (Other), Production and Operations Management
Journal Section Research Article
Authors

Serkan Derici 0000-0003-2581-6770

Early Pub Date January 4, 2024
Publication Date December 31, 2023
Submission Date October 14, 2023
Acceptance Date November 13, 2023
Published in Issue Year 2023

Cite

APA Derici, S. (2023). Forecasting Order Delays with Artificial Intelligence-Based Applications. İzmir Yönetim Dergisi, 4(2), 22-27. https://doi.org/10.56203/iyd.1375921

Makalenizi sisteme yüklemeden önce mutlaka şablon'lardan ve yazım kurallarından faydalanınız. Yazım kurallarına uygun olmayan çalışmaların hakem süreci başlatılmayacaktır.