Research Article
BibTex RIS Cite

Türkiye Sanayi Üretim Endeksinin XGBoost ve ARIMA ile Tahmini

Year 2025, Volume: 6 Issue: 1, 68 - 75, 31.07.2025
https://doi.org/10.56203/iyd.1668673

Abstract

Bu çalışma, Türkiye'nin sanayi üretim endeksine yönelik zaman serisi tahmininde makine öğrenmesi ve geleneksel istatistiksel yöntemlerinin göreli başarılarını karşılaştırmayı amaçlamaktadır. Analizde, karar ağaçlarına dayalı güçlü bir topluluk öğrenme algoritması olan XGBoost ve geleneksel zaman serisi analizinin başlıca yöntemlerinden ARIMA modeli ele alınmıştır. 1986-2025 dönemine ait toplam 469 aylık veri kullanılmış ve modellerin eğitim ve test performansları ortalama karesel hatanın karekökü (“root mean squared error”, RMSE), ortalama mutlak hata (“mean absolute error”, MAE) ile belirlilik katsayısı (R²) metrikleri üzerinden değerlendirilmiştir. Araştırmanın bulguları, XGBoost ve ARIMA modellerinin sanayi üretim endeksi tahmininde benzer performans sergilediğini, ancak XGBoost'un hiperparametre optimizasyonu ve hesaplama maliyeti açısından daha karmaşık bir süreç gerektirdiğini göstermektedir. Öte yandan, her iki yöntemin de mevsimsellik ve dışsal makroekonomik göstergeleri doğrudan modele dahil etmemesi nedeniyle tahmin doğruluklarının sınırlı kaldığı anlaşılmaktadır. Bu bağlamda çalışma, sanayi üretimi gibi karmaşık ekonomik göstergelerin tahmininde makine öğrenmesi ve geleneksel yöntemlerin birbirini tamamlayan niteliklerini ortaya koyarak, gelecek araştırmalara hibrit modeller ve genişletilmiş değişken setleriyle daha kapsayıcı analizler yapılması yönünde öneriler sunmaktadır.

Ethical Statement

Veriler TÜİK tarafından sağlanmıştır.

Thanks

Değerli editörlere ve hakemlere teşekkür ederim.

References

  • Ağca, A., Uçar, O., & Uladi, Ş. U. (2024). Linking economic growth and international trade taxes in Turkey: A Fourier approach, Heliyon, 10(7). https://doi.org/10.1016/j.heliyon.2024.e28741
  • Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Aubet, F. X., Callot, L., & Januschowski, T. (2022). Deep learning for time series forecasting: Tutorial and literature survey, ACM Computing Surveys, 55.
  • Box, G. E. P. (1976). Science and statistics, Journal of the American Statistical Association, 71, 791–799.
  • Cachon, G. P., & Terwiesch, C. (2020). Matching supply with demand: An introduction to operations management (4th ed.). New York, NY: McGraw-Hill Education.
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17 August, 785–794.
  • Chopra, S., & Sodhi, M. S. (2014). Reducing the risk of supply chain disruptions, MIT Sloan Management Review, 55, 73–80.
  • Doğan, S., & Büyükkör, Y. (2022). Makine öğrenmesi ile finansal zaman serisi tahminleme, Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24, 1205–1230.
  • Döring, L., Grumbach, F., & Reusch, P. (2024). Optimizing sales forecasts through automated integration of market indicators, arXiv preprint, arXiv:2406.07564.
  • Eşidir, K. A. (2024). Türkiye'nin kimyasal madde ithalatının gelecek tahmini: Makine öğrenmesi ve topluluk öğrenme yöntemleri performans analizi, Fırat University Journal of Social Sciences, 35, 261–278.
  • Fang, Z.-g., Yang, S.-q., Lv, C.-x., An, S.-y., & Wu, W. (2022). Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: A time-series study, BMJ Open, 12(7). https://doi.org/10.1136/bmjopen-2021-056685
  • Gayaker, S. (2025). Türkiye'de ekonomik şoklar ve krizler bağlamında enflasyon öngörüsü: XGBoost ve ARMA yöntemlerinin karşılaştırması, Ekonomi, Politika ve Finans Araştırmaları Dergisi, 9, 877–895.
  • Günay, M. (2018). Forecasting industrial production and inflation in Turkey with factor models, Central Bank Review, 18, 149–161.
  • Gür, Y. E., & Eşidir, K. A. (2024). Türkiye hurda demir çelik ithalatının gelecek değerlerinin derin öğrenme, makine öğrenmesi ve topluluk öğrenme yöntemleri ile öngörülmesi, Alanya Akademik Bakış, 8(3). https://doi.org/10.29023/alanyaakademik.1497646
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.
  • Heilbroner, R. L. (2011). The worldly philosophers: The lives, times and ideas of the great economic thinkers. New York: Simon & Schuster.
  • Heizer, J., Render, B., & Munson, C. (2017). Operations management: Sustainability and supply chain management (12th ed.). Harlow: Pearson Education Limited.
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning. New York, NY: Springer US.
  • Jonathan, D., & Kung-Sik, C. (2008). Time series analysis with applications in R. New York: Springer.
  • Kim, J., Kim, H., Kim, H., Lee, D., & Yoon, S. (2024). A comprehensive survey of time series forecasting: Architectural diversity and open challenges. [Yayınevi ve sayfa bilgisi eksik.]
  • Koç, E., Kaya, K., & Şenel, M. C. (2016). Türkiye’de sanayi sektörü ve temel sanayi göstergeleri – sanayi üretim endeksi, Mühendis ve Makina, 57(682), 42–53.
  • Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: A survey, Philosophical Transactions of the Royal Society A, 379.
  • Liu, P., Wu, B., Hu, Y., Li, N., Dai, T., Bao, J., & Xia, S.-t. (2024). TimeBridge: Non-stationarity matters for long-term time series forecasting. [Yayınevi ve dergi bilgisi eksik.]
  • Makridakis, S., Hyndman, R. J., & Petropoulos, F. (2020). Forecasting in social settings: The state of the art, International Journal of Forecasting, 36(1), 15–28.
  • Miller, J. A., Aldosari, M., Saeed, F., Barna, H., Rana, S., Arpinar, I. B., Liu, N., Habib Barna, N., & Liu, N.-H. (2024). A survey of deep learning and foundation models for time series forecasting, arXiv.org, 1.
  • Nelson, D. (2008). The Penguin dictionary of mathematics. London: Penguin UK.
  • Noorunnahar, M., Chowdhury, A. H., Arefeen, F., & Mila, F. A. (2023). A tree-based extreme gradient boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh, PLOS ONE, 18. https://journals.plos.org
  • Piketty, T. (2014). Capital in the Twenty-First Century: A multidimensional approach to the history of capital and social classes.
  • Samuel, A. L. (1959). Some studies in machine learning using the game of checkers, IBM Journal of Research and Development, 3(3), 210–229.
  • Schwab, K. (2016). The fourth industrial revolution. New York: Crown Publishing Group.
  • Slack, N., Brandon-Jones, A., & Burgess, N. (2022). Operations management. London: Pearson.
  • Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., De Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet, Science, 347.
  • Stewart, I. (2011). The mathematics of life. New York: Basic Books.
  • Stock, J. H., & Watson, M. W. (2015). Introduction to econometrics (3rd ed.). New York: Pearson.
  • Sullivan, W. (2017). Machine learning beginners guide: Algorithms, supervised & unsupervised learning, decision tree & random forest introduction.
  • Taştan, H., & Yıldız Teknik Üniversitesi. (2010). Türkiye’de ihracat, ithalat ve ekonomik büyüme arasındaki nedensellik ilişkilerinin spektral analizi, Ekonomi Bilimleri Dergisi, 2, 87–98.
  • Tayalı, H. A. (2016). Statistical variance procedure based analytical hierarchy process: An application on multicriteria facility location selection. İstanbul. [Yayınevi eksik.]
  • Tayalı, H. A. (2017). Tedarikçi seçiminde WASPAS yöntemi, The Journal of Academic Social Science, 47, 368–380.
  • Tayalı, H. A. (2023). Introduction to mathematical models in operations planning. CRC Press.
  • Thornton, P. (2014). The great economists: Ten economists whose thinking changed the way we live. Harlow: Pearson Education Limited.
  • Tippmann, S. (2014). Programming tools: Adventures with R, Nature, 517(7532). https://doi.org/10.1038/517109a
  • Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., & Troncoso, A. (2021). Deep learning for time series forecasting: A survey, Big Data, 9, 3–21. https://home.liebertpub.com/big
  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1, 67–82.

Forecasting Industrial Production Index Using XGBOOST Method

Year 2025, Volume: 6 Issue: 1, 68 - 75, 31.07.2025
https://doi.org/10.56203/iyd.1668673

Abstract

This study aims to compare the relative performance of machine learning and traditional statistical methods in time series forecasting of Turkey’s industrial production index. The analysis focuses on XGBoost, a powerful ensemble learning algorithm based on decision trees, and ARIMA, one of the main methods of traditional time series analysis. A total of 469 monthly data points covering the period 1986–2025 were used, and the models’ training and test performances were evaluated based on root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination (R²). The findings indicate that both XGBoost and ARIMA models produce similar forecasting performance for the industrial production index, although XGBoost requires a more complex process in terms of hyperparameter optimization and computational cost. On the other hand, it is observed that the predictive accuracy of both models remains limited, as neither directly incorporates seasonality or external macroeconomic indicators into the model. In this context, the study highlights the complementary strengths of machine learning and traditional methods in forecasting complex economic indicators such as industrial production and suggests that future research should explore hybrid models and expanded variable sets for more comprehensive analyses.

References

  • Ağca, A., Uçar, O., & Uladi, Ş. U. (2024). Linking economic growth and international trade taxes in Turkey: A Fourier approach, Heliyon, 10(7). https://doi.org/10.1016/j.heliyon.2024.e28741
  • Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Aubet, F. X., Callot, L., & Januschowski, T. (2022). Deep learning for time series forecasting: Tutorial and literature survey, ACM Computing Surveys, 55.
  • Box, G. E. P. (1976). Science and statistics, Journal of the American Statistical Association, 71, 791–799.
  • Cachon, G. P., & Terwiesch, C. (2020). Matching supply with demand: An introduction to operations management (4th ed.). New York, NY: McGraw-Hill Education.
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17 August, 785–794.
  • Chopra, S., & Sodhi, M. S. (2014). Reducing the risk of supply chain disruptions, MIT Sloan Management Review, 55, 73–80.
  • Doğan, S., & Büyükkör, Y. (2022). Makine öğrenmesi ile finansal zaman serisi tahminleme, Ankara Hacı Bayram Veli Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24, 1205–1230.
  • Döring, L., Grumbach, F., & Reusch, P. (2024). Optimizing sales forecasts through automated integration of market indicators, arXiv preprint, arXiv:2406.07564.
  • Eşidir, K. A. (2024). Türkiye'nin kimyasal madde ithalatının gelecek tahmini: Makine öğrenmesi ve topluluk öğrenme yöntemleri performans analizi, Fırat University Journal of Social Sciences, 35, 261–278.
  • Fang, Z.-g., Yang, S.-q., Lv, C.-x., An, S.-y., & Wu, W. (2022). Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: A time-series study, BMJ Open, 12(7). https://doi.org/10.1136/bmjopen-2021-056685
  • Gayaker, S. (2025). Türkiye'de ekonomik şoklar ve krizler bağlamında enflasyon öngörüsü: XGBoost ve ARMA yöntemlerinin karşılaştırması, Ekonomi, Politika ve Finans Araştırmaları Dergisi, 9, 877–895.
  • Günay, M. (2018). Forecasting industrial production and inflation in Turkey with factor models, Central Bank Review, 18, 149–161.
  • Gür, Y. E., & Eşidir, K. A. (2024). Türkiye hurda demir çelik ithalatının gelecek değerlerinin derin öğrenme, makine öğrenmesi ve topluluk öğrenme yöntemleri ile öngörülmesi, Alanya Akademik Bakış, 8(3). https://doi.org/10.29023/alanyaakademik.1497646
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.
  • Heilbroner, R. L. (2011). The worldly philosophers: The lives, times and ideas of the great economic thinkers. New York: Simon & Schuster.
  • Heizer, J., Render, B., & Munson, C. (2017). Operations management: Sustainability and supply chain management (12th ed.). Harlow: Pearson Education Limited.
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning. New York, NY: Springer US.
  • Jonathan, D., & Kung-Sik, C. (2008). Time series analysis with applications in R. New York: Springer.
  • Kim, J., Kim, H., Kim, H., Lee, D., & Yoon, S. (2024). A comprehensive survey of time series forecasting: Architectural diversity and open challenges. [Yayınevi ve sayfa bilgisi eksik.]
  • Koç, E., Kaya, K., & Şenel, M. C. (2016). Türkiye’de sanayi sektörü ve temel sanayi göstergeleri – sanayi üretim endeksi, Mühendis ve Makina, 57(682), 42–53.
  • Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: A survey, Philosophical Transactions of the Royal Society A, 379.
  • Liu, P., Wu, B., Hu, Y., Li, N., Dai, T., Bao, J., & Xia, S.-t. (2024). TimeBridge: Non-stationarity matters for long-term time series forecasting. [Yayınevi ve dergi bilgisi eksik.]
  • Makridakis, S., Hyndman, R. J., & Petropoulos, F. (2020). Forecasting in social settings: The state of the art, International Journal of Forecasting, 36(1), 15–28.
  • Miller, J. A., Aldosari, M., Saeed, F., Barna, H., Rana, S., Arpinar, I. B., Liu, N., Habib Barna, N., & Liu, N.-H. (2024). A survey of deep learning and foundation models for time series forecasting, arXiv.org, 1.
  • Nelson, D. (2008). The Penguin dictionary of mathematics. London: Penguin UK.
  • Noorunnahar, M., Chowdhury, A. H., Arefeen, F., & Mila, F. A. (2023). A tree-based extreme gradient boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh, PLOS ONE, 18. https://journals.plos.org
  • Piketty, T. (2014). Capital in the Twenty-First Century: A multidimensional approach to the history of capital and social classes.
  • Samuel, A. L. (1959). Some studies in machine learning using the game of checkers, IBM Journal of Research and Development, 3(3), 210–229.
  • Schwab, K. (2016). The fourth industrial revolution. New York: Crown Publishing Group.
  • Slack, N., Brandon-Jones, A., & Burgess, N. (2022). Operations management. London: Pearson.
  • Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., De Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet, Science, 347.
  • Stewart, I. (2011). The mathematics of life. New York: Basic Books.
  • Stock, J. H., & Watson, M. W. (2015). Introduction to econometrics (3rd ed.). New York: Pearson.
  • Sullivan, W. (2017). Machine learning beginners guide: Algorithms, supervised & unsupervised learning, decision tree & random forest introduction.
  • Taştan, H., & Yıldız Teknik Üniversitesi. (2010). Türkiye’de ihracat, ithalat ve ekonomik büyüme arasındaki nedensellik ilişkilerinin spektral analizi, Ekonomi Bilimleri Dergisi, 2, 87–98.
  • Tayalı, H. A. (2016). Statistical variance procedure based analytical hierarchy process: An application on multicriteria facility location selection. İstanbul. [Yayınevi eksik.]
  • Tayalı, H. A. (2017). Tedarikçi seçiminde WASPAS yöntemi, The Journal of Academic Social Science, 47, 368–380.
  • Tayalı, H. A. (2023). Introduction to mathematical models in operations planning. CRC Press.
  • Thornton, P. (2014). The great economists: Ten economists whose thinking changed the way we live. Harlow: Pearson Education Limited.
  • Tippmann, S. (2014). Programming tools: Adventures with R, Nature, 517(7532). https://doi.org/10.1038/517109a
  • Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., & Troncoso, A. (2021). Deep learning for time series forecasting: A survey, Big Data, 9, 3–21. https://home.liebertpub.com/big
  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1, 67–82.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Operation, Business Administration
Journal Section Research Article
Authors

Halit Alper Tayalı 0000-0002-2098-6482

Early Pub Date July 31, 2025
Publication Date July 31, 2025
Submission Date March 31, 2025
Acceptance Date July 7, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Tayalı, H. A. (2025). Türkiye Sanayi Üretim Endeksinin XGBoost ve ARIMA ile Tahmini. İzmir Yönetim Dergisi, 6(1), 68-75. https://doi.org/10.56203/iyd.1668673

Before uploading your article to the system, make sure to use the templates and spelling rules. The referee process will not be started for the works that do not comply with the spelling rules.