Research Article
BibTex RIS Cite

IDENTIFICATION OF BACTERIA ISOLATED FROM WILD PLANTS TAKEN FROM DIFFERENT LOCATİONS AND DETERMINATION OF PROPERTIES OF NITROGEN FIXATION, PHOSPHORUS, POTASSIUM AND CALCİUM SOLUBILIZING

Year 2020, , 71 - 90, 18.11.2020
https://doi.org/10.46876/ja.825647

Abstract

In this study, 246 bacterial strains were isolated from 23 healthy plant samples were taken from different provinces. Bacterial strains were tested for hypersensitive response (HR) on tobacco. HR test showed that bacterial strains were not pathogenic. The strains were identified by using the Microbial Identification System. According to the fatty acid methyl ester analysis results bacterial strains were determined as follow; Arthbacter (17), Brevibacillus (12), Bacillus (65), Lysinibacillus (3), Herbaspirillum (7), Kocuria (21), Paucimonas (8), Pseudomonas (36), Virgibacillus (3), Microbacterium (11), Micrococcus (8), Erwinia (4), Stenotrophomonas (8), Nesterenkonia (1), Achromobacter (1), Curtobacterium (5), Rhodococcus (7), Enterobacter (2), Escherichia (1), Chryseobacterium (1), Xanthomonas (3), Acinetobacter (5), Rothia (1), Paenibacillus (1), Ochrobacterium (1), Pantoea (1), Sphingbacterium (5), Rhizobium (3), Grimontia (1), Aeromonas (1) , Brevundimonas (1), Phyllobacterium (1) ve Staphylococcus (1). The obtained bacterial strains were tested for nitrogen fixing, phosphate, potassium and calcium solubilising properties. Herbaspirillum huttiense (SK4, SK49), Microbacterium esteraromaticum (SK19, SK39, SY48), Achromobacter xylosoxidans (SK50), Paucimonas lemoignei (SK56), Pantoea agglomerans (SY43) , Pseudomonas putida biotype B (YS2, DT17), Pseudomonas syringae pv. syringae (EP19) and Pseudomonas pseudoalcaligenes (SA20) strains were found to be positive in all tests and the test results of other strains were found to be variable.

Project Number

2017-FBE-A26

References

  • Ahmad, F., Ahmad, I., Khan, M.S., 2005. Indole Acetic Acid Production by The İndigenous İsolates of Azotobacter and Fluorescent Pseudomonas in The Pserence and Absence of Tryptophan. Turk Journal Biology, 29(5), 29-34.
  • Akman, Z., Kara, B., 2001. Ekolojik Tarımda Birlikte Ekim (İntercropping)’in Rolü. Türkiye İkinci Ekolojik Tarım Sempozyumu, 375-383s. Antalya.
  • Aksoy, U., 2001. Ekolojik Tarım: Genel Bir Bakış. Türkiye 2. Ekolojik Tarım Sempozyumu, Antalya, 69-77.
  • Aseri, G.K., Jain, N., Tarafdar, J.C., 2009. Hydrolysis of Organic Phosphate forms by Phosphatases and Phytase Producing Fungi of Arid and Semi-arid Soils of India. American-Eurasian Journal of Agriculture and Environment Science, 5(4), 564-570.
  • Bakhshandeh, E., Pirdashti, H., Lendeh, K.S., 2017. Phosphate and Potassium-Solubilizing Bacteria Effect on the Growth of Rice. Ecological Engineering 103,164-169.
  • Basak, B.B., Biswas, D.R., 2012. Influence of Potassium Solubilizing Microorganism (Bacillus mucilaginous) and Waste Mica on Potassium Uptake Dynamics by Sudan Grass (Sorghum vulgare Pers) Grown under Two Alfisols. Plant Soil, 317 (1-2), 235-255.
  • Bashir Z., Zargar M.Y., Husain, M., Mohiddin, F.A., Kousar, S., Zahra, S.B., Ahmad, A., Rathore, J.P., 2017. Potassium Solubilizing Microorganisms: Mechanism and Diversity. International Journal Pure and Applied Bioscience, 5 (5), 653.
  • Bhattacharya, S., Bachani, P., Jain, D., Patidar, S.K., Mishra, S., 2016. Extraction of Potassium from K-Feldspar Through Potassium Solubilization in the Halophilic Acinetobacter soli (MTCC 5918) Isolated From the Experimental Salt Farm. International Journal of Mineral Processing, 152, 53-57.
  • Cherif-Slini, H., Silini, A., Ghoul, M., Yadav, S., 2012. Isolation and Characterization of Plant Growth Promoting Traits of a Rhizobacteria: Pantoea agglomerans Ima2, 15(6), 267-276.
  • De Freitas, J.R., Banerjee, M.R., Germida, J.J., 1997. Phosphate Solubilizing Rhizobacteria Enhance the growth and yield but no phosphorus uptake of canola (Brassica napus L.), Biology and Fertility of Soils, 24(4), 358–364.
  • Dursun, A., Ekinci, M., Dönmez, M.F., Eminağaoğlu, H., 2010. Rhizobakteri Uygulamalarının Kornişon Hıyar (Cucumis sativus L.)’da Bitki Gelişimi ve Verime Etkisi, VIII. Sebze Tarımı Sempozyumu, Van, 435-439.
  • Emrebaş, N., 2010. Topraksız Ortamda Roka ve Tere Yetiştiriciliğinde Mikrobiyal Gübre (Trichoderma harzianum, Kuen 1585) Uygulamasının Bitki Gelişimi ve Verimi Üzerine Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 59.
  • Er, C., 2009. Organik Tarım Bakımından Türkiye’nin Potansiyeli, Bugünkü Durumu ve Geleceği. İstanbul Ticaret Odası yayınları, 3-4.
  • Fatharani, R., Rahayu, Y.S., 2018. Isolation and Characterization of Potassium-Solubilizing Bacteria from Paddy Rhizosphere (Oryza sativa L.). Journal of Physics, 1108.
  • Frossard, E., Condron, L.M., Oberson, A., Sina, S., Fardeau, J.C., 2000. Processes Governing Phosphorus Availability in Temperate Soils. Journal of Environmental Quality, 29(1), 15-23.
  • Glick, B., 2012, Plant Growth-Promoting Bacteria: Mechanisms and Appli-Cations. Scientifica 2012:1–15. Available at: http://dx.doi.org/10. Glick B (2012) Plant Growth-Promoting Bacteria: Mechanisms and Appli-Cations.
  • Hansda, A., Kumar, V., Anshumali A., 2017. Cu-resistant Kocuria sp. CRB15: a Potential PGPR İsolated from the dry Tailing of Rakha Copper Mine. Biotech., 7(2), 132.
  • Hırano, K., Hayatsu, M., Nıoh, H., Nakaı, H., 2001, Comparision of Nitrogen Fixing Bacterial Flora of Rice Rhizosphere in the Fields Treataed Long Term With Agrochemical and Non- Grochemicals, Microbes and Environment, 16(3), 155-160.
  • Igual, J.M., Valverde, A., Cervantes, E., Velázquez, E., 2001. Phosphate-Solubilizing Bacteria as İnoculants for Agriculture: use of Updated Molecular Techniques in their Study. Agronomie, 21(6-7), 561-568.
  • İlter, E., Altındişli, A., 2002. Ekolojik Tarımda İlke ve Kavramlar. Organik (Ekolojik) Tarım Eğitimi Ders Notları. ETO, İzmir, 263.
  • Klement, Z., Rudolph, K., Sands, D.C., 1990. Methods in Phytobacteriology. Akademıa Kıado, Budapest, 547.
  • Kucey, R.M.N., Janzen, H.H., Legget, M.E., 1989. Microbial Mediated Increases in Plant Available Phosphorus. Advances In Agronomy, 42, 199-228.
  • Lelliott, R.A., Stead, D.E., 1987. Methods For The Diagnosis of Bacterial Diseases of Plants. Blacwell Scientific Publications. p216.
  • Lopez, B.R., Bashan, Y., Bacilio, M., 2011. Endophytic Bacteria of Mammillaria Fraileana, an Endemic Rock-Colonizing Cactus of the Southern Sonoran Desert. Arch Microbiol, 193(7), 527-541.
  • Meena, V.S., Maurya, B.R., Bahadur, I., 2015. Potassium Solubilization by Bacterial Strain in Waste Mica. Bangladesh Journal of Botany. 43(2), 235-237.
  • Nahas, E., 1996. Factors Determining Rock Phosphate Solubilization by Microorganisms İsolated from Soil. World Journal of Microbiology and Biotechnology, 12(6), 567-572.
  • Nahas, E., 2007. Phosphate Solubilising Microorganisms: Effect of Carbon, Nitrogen and Phosphorus Sources. Developments in Plant and Soil Science, 111-115.
  • Narsian, V., Patel, H.H., 2000. Aspergillus aculeatus as Rock Phosphate Solubilizers. Soil Biology and Biochemistry, 32(4), 559-565.
  • Nautıyal, C.S., 1999. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiology Letters, 170(1), 265-270.
  • Nautiyal, C.S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R., Verma, D., 2000. Stres İnduced Phosphate Solubilizaton in Bacteria Isolated From Alkaline Soils. Fems Microbıology Letters, 182(2), 291-296.
  • Nielsen, M.N., Wındıng, A., 2002. Microorganisms As Indicators of Soil Health. National Environmental Research Institute, Technical Report No: 388, Denmark.
  • Parmar, K.B., Mehta, B.P., Kunt, M.D., 2016. Isolation, Characterization and Identification of Potassium Solubilizing Bacteria From Rhizosphere Soil of Maıze (Zea mays). International Journal of Science, Environment and Technology, 5 (5), 3030-3037.
  • Parmar, P., Sindhu, S.S., 2013. Potassium Solubilization by Rhizosphere Bacteria: Influence of Nutritional and Environmental Conditions. Journal of Microbiology Research, 3(1), 25-3.
  • Puente, M.E., Bashan, Y., Li, C.Y., Lebsky, V.K., 2004. Microbial Populations and Activities in The Rhizoplane of Rock-Weathering Desert Plants. I. Root Colonization and Weathering of Igneous Rocks. Plant Biology, 6(5), 629-642.
  • Puente, M.E., Li, C.Y., Bashan, Y., 2009. Endophytic Bacteria in Cacti Seeds Can İmprove the Development of Cactus Seedlings Environmental and Experimental Botany, 66(3), 402–408.
  • Purwanto, P., Simarmata, T., 2017. Nitrogenase Activity and IAA Production of Indigenous Diazotroph and Its Effect on Rice Seedling Growth. Agrıvıta Journal of Agricultural Science, 39(1), 31-37.
  • Rajawat, M.V.S., Singh, S., Singh, G., Saxena, A.K., 2012. Isolation and Characterization of K-Solubilizing Bacteria İsolated from Different Rhizospheric Soil. Proceeding of 53rd Annual Conference of Association of Microbiologists of India, India, 124.
  • Rana G., Mandal T., Mandal N. K., Sakha D. and Meikap C. B., 2015. Calcite Solubilization by Bacteria: A Novel Method of Environment Pollution Control. Geomicrobiology Journal, 32(9), 846-852.
  • Richardson, A.E., 2001. Prospects for Using Soil Microorganisms to İmprove the Acquisition of Phosphorus by Plants. Australian Journal Of Plant Physiology, 28(9), 897-906.
  • Sasser, M. J., 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical note 101, Microbial ID, Inc., Newark, De.
  • Sen, A., Padhan, D., Poi, S.C., 2016. Isolation and Characterization of Mineral Potassium Solubilizing Bacteria From Rhizosphere Soils. Journal of Applied and Natural Science, 8(2), 705-710.
  • Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A., 2013. Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Springer Plus, 2(1), 587.
  • Sıngh, J.S., Pandey, V.C., Sıngh, D.P., 2011. Efficient Soil Microorganisms: A New Dimension for Sustainable Agriculture and Environmental Development. Agriculture, Ecosystems & Environment, 140(3-4), 339-353.
  • Singh, G., Biswas, D.R., Marwah, T.S., 2010. Mobilization of Potassium From Waste Mica By Plantgrowth Promoting Rhizobacteria and its Assimilation by Maize (Zea mays) and Wheat (Triticum aestivum L.). Journal of Plant Nutrition., 33(8), 1236-1251.
  • Subbarao, N.S., 1988. Phosphate Solubilizing Micro-Organism. In: Biofertilizer in Agriculture and Forestry. Regional Biofert. Dev. Centre, Hissar, India. pp. 133-142.
  • Sujatha, S., Sirisham, S., Reddy, S.M., 2004. Phosphate Solubilization by Thermophilic Microorganisms. Indian Journal of Microbiology, 44(2), 101-104.
  • Szekeres, A., 2006. Echophysiological and Molecular İnvestigation of Trichoderma Strains İsolated from Winter Wheat Rhizosphere. Acta Biological Szeged, 49(3-4), 61.
  • Taha, S.M., Mahmoud, S.A.Z., El-Damaty, A.A., Abd El- Hafez, A.M., 1969. Activity of Phosphate Dissolving Bacteria İn Egyptian Soil. Plant Soil, 31(1), 149.
  • Te-Hsiu, M., 1999. The İnternational Program on Plant Bioassays and the Report of the Follow-Up Study After The Hands-on Workshop in China. Mutation Research, 426(2): 103-106.
  • Toprak, E., 2012. “Kök Bakterilerinin Farklı Substratlarda Domates Yetiştiriciliğine Etkisi”, Ege Üniversitesi Fen bilimleri Enstitüsü Yüksek Lisans Tezi, s 112.
  • Tosun, N., Türküsay, H., Saygılı, H. ve Tanyolaç, B., 2003, Sanayi Domatesi Yetistiriciliğinde Geç Yanıklık (Phytophthora infestans (Mont.) de Bary) Hastalığının Kontrolünde Erken Uyarı Sisteminin Kullanılması Üzerinde Araştırmalar. Ege Üniversitesi Ziraat Fakültesi Bilimsel Araştırmalar. Proje No: 2000/BIL/005, 2.
  • Vassilev, N., Vasileva, M.A., Nikolaeva, L., 2006. Simultaneous P Solubilizing and Biocontrol Activity of Microorganisms: Potentials and Future Trends. Applied Microbiology and Biotechnology, 71(2), 137-144.
  • Vazquez, P., Holguin, G., Puente, M., Lopez-cortes, A., Bashan, Y., 2000. Phosphate Solubilizing Microorganisms Associated With the Rhizosphere of Mangroves in a Semi-Arid Coastal Lagoon. Biol Fertil Soils, 30(5-6), 460–468.
  • Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y., Valero, J.R., 2007, Antagonistic fungi, Trichoderma spp.: Panoply of Biological Control. Biochemical Engineering Journal. 37(1), 1-20.
  • Vessey, J.K., 2003, Plant Growth Promoting Rhizobacteria as Bio Fertilizers. Plant and Soil, 255(2), 571-586.
  • Whitelaw, M.A., 2000. Growth Promotion of Plants İnoculated With Phosphate Solubilizing Fungi. Advances In Agronomy, 69, 99-151.
  • Yolcu, H., Daşcı, M., 2008. Ülkemizde Organik Yem Bitkileri Üretiminin Mevcut Durumu. Hasad Hayvancılık Dergisi. 24, 40-46.
  • Zengin, M., 2007. Organik Tarım. Hasad Yayıncılık, s 136.
  • Zhao, X.R., Lin, Q.M., 2001. A review of Phosphate Dissolving Microorganisms. Soil Fertilizer, 3, 7-11.

FARKLI LOKASYONLARDA YABANİ BİTKİ TÜRLERİNDEN İZOLE EDİLEN BAKTERİLERİN TANISI VE AZOT FİKSE ETME, FOSFOR, POTASYUM VE KALSİYUM ÇÖZME ÖZELLİKLERİNİN BELİRLENMESİ

Year 2020, , 71 - 90, 18.11.2020
https://doi.org/10.46876/ja.825647

Abstract

Bu çalışmada, farklı illerden alınan 23 sağlıklı bitki örneğinden yapılan izolasyon sonucunda 246 bakteri straini elde edilmiştir. Tütünde yapılan HR testi ile bakteri strainlerinin patojen olmadıkları belirlenmiştir. Strainler Mikrobial Tanı Sistemi kullanılarak yağ asit metil analizi ile Arthbacter (17), Brevibacillus (12), Bacillus (65), Lysinibacillus (3), Herbaspirillum (7), Kocuria (21), Paucimonas (8), Pseudomonas (36) , Virgibacillus (3), Microbacterium (11), Micrococcus (8), Erwinia (4), Stenotrophomonas (8), Nesterenkonia (1), Achromobacter (1), Curtobacterium (5), Rhodococcus (7), Enterobacter (2), Escherichia (1), Chryseobacterium (1), Xanthomonas (3), Acinetobacter (5), Rothia (1), Paenibacillus (1), Ochrobacterium (1), Pantoea (1), Sphingbacterium (5), Rhizobium (3), Grimontia (1), Aeromonas (1), Brevundimonas (1), Phyllobacterium (1) ve Staphylococcus (1) olarak belirlenmiştir. Elde edilen bakteri strainleri azot fiksasyonu, fosfat, potasyum ve kalsiyum çözücü özellikleri bakımından test edilmiştir. Bunlar arasında Herbaspirillum huttiense (SK4, SK49), Microbacterium esteraromaticum (SK19, SK39, SY48), Achromobacter xylosoxidans (SK50), Paucimonas lemoignei (SK56), Pantoea agglomerans (SY43), Pseudomonas putida biotype B (YS2, DT17), Pseudomonas syringae pv. syringae (EP19) ve Pseudomonas pseudoalcaligenes (SA20) olmak üzere 12 tane strainin bütün testlerde pozitif sonuç verdiği, diğer strainlerin test sonuçlarının ise değişkenlik gösterdiği belirlenmiştir.

Supporting Institution

Iğdır Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

2017-FBE-A26

Thanks

2017-FBE-A26 numaralı projenin desteklenmesinde verdikleri katkıdan dolayı Iğdır Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkür ederiz.

References

  • Ahmad, F., Ahmad, I., Khan, M.S., 2005. Indole Acetic Acid Production by The İndigenous İsolates of Azotobacter and Fluorescent Pseudomonas in The Pserence and Absence of Tryptophan. Turk Journal Biology, 29(5), 29-34.
  • Akman, Z., Kara, B., 2001. Ekolojik Tarımda Birlikte Ekim (İntercropping)’in Rolü. Türkiye İkinci Ekolojik Tarım Sempozyumu, 375-383s. Antalya.
  • Aksoy, U., 2001. Ekolojik Tarım: Genel Bir Bakış. Türkiye 2. Ekolojik Tarım Sempozyumu, Antalya, 69-77.
  • Aseri, G.K., Jain, N., Tarafdar, J.C., 2009. Hydrolysis of Organic Phosphate forms by Phosphatases and Phytase Producing Fungi of Arid and Semi-arid Soils of India. American-Eurasian Journal of Agriculture and Environment Science, 5(4), 564-570.
  • Bakhshandeh, E., Pirdashti, H., Lendeh, K.S., 2017. Phosphate and Potassium-Solubilizing Bacteria Effect on the Growth of Rice. Ecological Engineering 103,164-169.
  • Basak, B.B., Biswas, D.R., 2012. Influence of Potassium Solubilizing Microorganism (Bacillus mucilaginous) and Waste Mica on Potassium Uptake Dynamics by Sudan Grass (Sorghum vulgare Pers) Grown under Two Alfisols. Plant Soil, 317 (1-2), 235-255.
  • Bashir Z., Zargar M.Y., Husain, M., Mohiddin, F.A., Kousar, S., Zahra, S.B., Ahmad, A., Rathore, J.P., 2017. Potassium Solubilizing Microorganisms: Mechanism and Diversity. International Journal Pure and Applied Bioscience, 5 (5), 653.
  • Bhattacharya, S., Bachani, P., Jain, D., Patidar, S.K., Mishra, S., 2016. Extraction of Potassium from K-Feldspar Through Potassium Solubilization in the Halophilic Acinetobacter soli (MTCC 5918) Isolated From the Experimental Salt Farm. International Journal of Mineral Processing, 152, 53-57.
  • Cherif-Slini, H., Silini, A., Ghoul, M., Yadav, S., 2012. Isolation and Characterization of Plant Growth Promoting Traits of a Rhizobacteria: Pantoea agglomerans Ima2, 15(6), 267-276.
  • De Freitas, J.R., Banerjee, M.R., Germida, J.J., 1997. Phosphate Solubilizing Rhizobacteria Enhance the growth and yield but no phosphorus uptake of canola (Brassica napus L.), Biology and Fertility of Soils, 24(4), 358–364.
  • Dursun, A., Ekinci, M., Dönmez, M.F., Eminağaoğlu, H., 2010. Rhizobakteri Uygulamalarının Kornişon Hıyar (Cucumis sativus L.)’da Bitki Gelişimi ve Verime Etkisi, VIII. Sebze Tarımı Sempozyumu, Van, 435-439.
  • Emrebaş, N., 2010. Topraksız Ortamda Roka ve Tere Yetiştiriciliğinde Mikrobiyal Gübre (Trichoderma harzianum, Kuen 1585) Uygulamasının Bitki Gelişimi ve Verimi Üzerine Etkileri. Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 59.
  • Er, C., 2009. Organik Tarım Bakımından Türkiye’nin Potansiyeli, Bugünkü Durumu ve Geleceği. İstanbul Ticaret Odası yayınları, 3-4.
  • Fatharani, R., Rahayu, Y.S., 2018. Isolation and Characterization of Potassium-Solubilizing Bacteria from Paddy Rhizosphere (Oryza sativa L.). Journal of Physics, 1108.
  • Frossard, E., Condron, L.M., Oberson, A., Sina, S., Fardeau, J.C., 2000. Processes Governing Phosphorus Availability in Temperate Soils. Journal of Environmental Quality, 29(1), 15-23.
  • Glick, B., 2012, Plant Growth-Promoting Bacteria: Mechanisms and Appli-Cations. Scientifica 2012:1–15. Available at: http://dx.doi.org/10. Glick B (2012) Plant Growth-Promoting Bacteria: Mechanisms and Appli-Cations.
  • Hansda, A., Kumar, V., Anshumali A., 2017. Cu-resistant Kocuria sp. CRB15: a Potential PGPR İsolated from the dry Tailing of Rakha Copper Mine. Biotech., 7(2), 132.
  • Hırano, K., Hayatsu, M., Nıoh, H., Nakaı, H., 2001, Comparision of Nitrogen Fixing Bacterial Flora of Rice Rhizosphere in the Fields Treataed Long Term With Agrochemical and Non- Grochemicals, Microbes and Environment, 16(3), 155-160.
  • Igual, J.M., Valverde, A., Cervantes, E., Velázquez, E., 2001. Phosphate-Solubilizing Bacteria as İnoculants for Agriculture: use of Updated Molecular Techniques in their Study. Agronomie, 21(6-7), 561-568.
  • İlter, E., Altındişli, A., 2002. Ekolojik Tarımda İlke ve Kavramlar. Organik (Ekolojik) Tarım Eğitimi Ders Notları. ETO, İzmir, 263.
  • Klement, Z., Rudolph, K., Sands, D.C., 1990. Methods in Phytobacteriology. Akademıa Kıado, Budapest, 547.
  • Kucey, R.M.N., Janzen, H.H., Legget, M.E., 1989. Microbial Mediated Increases in Plant Available Phosphorus. Advances In Agronomy, 42, 199-228.
  • Lelliott, R.A., Stead, D.E., 1987. Methods For The Diagnosis of Bacterial Diseases of Plants. Blacwell Scientific Publications. p216.
  • Lopez, B.R., Bashan, Y., Bacilio, M., 2011. Endophytic Bacteria of Mammillaria Fraileana, an Endemic Rock-Colonizing Cactus of the Southern Sonoran Desert. Arch Microbiol, 193(7), 527-541.
  • Meena, V.S., Maurya, B.R., Bahadur, I., 2015. Potassium Solubilization by Bacterial Strain in Waste Mica. Bangladesh Journal of Botany. 43(2), 235-237.
  • Nahas, E., 1996. Factors Determining Rock Phosphate Solubilization by Microorganisms İsolated from Soil. World Journal of Microbiology and Biotechnology, 12(6), 567-572.
  • Nahas, E., 2007. Phosphate Solubilising Microorganisms: Effect of Carbon, Nitrogen and Phosphorus Sources. Developments in Plant and Soil Science, 111-115.
  • Narsian, V., Patel, H.H., 2000. Aspergillus aculeatus as Rock Phosphate Solubilizers. Soil Biology and Biochemistry, 32(4), 559-565.
  • Nautıyal, C.S., 1999. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiology Letters, 170(1), 265-270.
  • Nautiyal, C.S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R., Verma, D., 2000. Stres İnduced Phosphate Solubilizaton in Bacteria Isolated From Alkaline Soils. Fems Microbıology Letters, 182(2), 291-296.
  • Nielsen, M.N., Wındıng, A., 2002. Microorganisms As Indicators of Soil Health. National Environmental Research Institute, Technical Report No: 388, Denmark.
  • Parmar, K.B., Mehta, B.P., Kunt, M.D., 2016. Isolation, Characterization and Identification of Potassium Solubilizing Bacteria From Rhizosphere Soil of Maıze (Zea mays). International Journal of Science, Environment and Technology, 5 (5), 3030-3037.
  • Parmar, P., Sindhu, S.S., 2013. Potassium Solubilization by Rhizosphere Bacteria: Influence of Nutritional and Environmental Conditions. Journal of Microbiology Research, 3(1), 25-3.
  • Puente, M.E., Bashan, Y., Li, C.Y., Lebsky, V.K., 2004. Microbial Populations and Activities in The Rhizoplane of Rock-Weathering Desert Plants. I. Root Colonization and Weathering of Igneous Rocks. Plant Biology, 6(5), 629-642.
  • Puente, M.E., Li, C.Y., Bashan, Y., 2009. Endophytic Bacteria in Cacti Seeds Can İmprove the Development of Cactus Seedlings Environmental and Experimental Botany, 66(3), 402–408.
  • Purwanto, P., Simarmata, T., 2017. Nitrogenase Activity and IAA Production of Indigenous Diazotroph and Its Effect on Rice Seedling Growth. Agrıvıta Journal of Agricultural Science, 39(1), 31-37.
  • Rajawat, M.V.S., Singh, S., Singh, G., Saxena, A.K., 2012. Isolation and Characterization of K-Solubilizing Bacteria İsolated from Different Rhizospheric Soil. Proceeding of 53rd Annual Conference of Association of Microbiologists of India, India, 124.
  • Rana G., Mandal T., Mandal N. K., Sakha D. and Meikap C. B., 2015. Calcite Solubilization by Bacteria: A Novel Method of Environment Pollution Control. Geomicrobiology Journal, 32(9), 846-852.
  • Richardson, A.E., 2001. Prospects for Using Soil Microorganisms to İmprove the Acquisition of Phosphorus by Plants. Australian Journal Of Plant Physiology, 28(9), 897-906.
  • Sasser, M. J., 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical note 101, Microbial ID, Inc., Newark, De.
  • Sen, A., Padhan, D., Poi, S.C., 2016. Isolation and Characterization of Mineral Potassium Solubilizing Bacteria From Rhizosphere Soils. Journal of Applied and Natural Science, 8(2), 705-710.
  • Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A., 2013. Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. Springer Plus, 2(1), 587.
  • Sıngh, J.S., Pandey, V.C., Sıngh, D.P., 2011. Efficient Soil Microorganisms: A New Dimension for Sustainable Agriculture and Environmental Development. Agriculture, Ecosystems & Environment, 140(3-4), 339-353.
  • Singh, G., Biswas, D.R., Marwah, T.S., 2010. Mobilization of Potassium From Waste Mica By Plantgrowth Promoting Rhizobacteria and its Assimilation by Maize (Zea mays) and Wheat (Triticum aestivum L.). Journal of Plant Nutrition., 33(8), 1236-1251.
  • Subbarao, N.S., 1988. Phosphate Solubilizing Micro-Organism. In: Biofertilizer in Agriculture and Forestry. Regional Biofert. Dev. Centre, Hissar, India. pp. 133-142.
  • Sujatha, S., Sirisham, S., Reddy, S.M., 2004. Phosphate Solubilization by Thermophilic Microorganisms. Indian Journal of Microbiology, 44(2), 101-104.
  • Szekeres, A., 2006. Echophysiological and Molecular İnvestigation of Trichoderma Strains İsolated from Winter Wheat Rhizosphere. Acta Biological Szeged, 49(3-4), 61.
  • Taha, S.M., Mahmoud, S.A.Z., El-Damaty, A.A., Abd El- Hafez, A.M., 1969. Activity of Phosphate Dissolving Bacteria İn Egyptian Soil. Plant Soil, 31(1), 149.
  • Te-Hsiu, M., 1999. The İnternational Program on Plant Bioassays and the Report of the Follow-Up Study After The Hands-on Workshop in China. Mutation Research, 426(2): 103-106.
  • Toprak, E., 2012. “Kök Bakterilerinin Farklı Substratlarda Domates Yetiştiriciliğine Etkisi”, Ege Üniversitesi Fen bilimleri Enstitüsü Yüksek Lisans Tezi, s 112.
  • Tosun, N., Türküsay, H., Saygılı, H. ve Tanyolaç, B., 2003, Sanayi Domatesi Yetistiriciliğinde Geç Yanıklık (Phytophthora infestans (Mont.) de Bary) Hastalığının Kontrolünde Erken Uyarı Sisteminin Kullanılması Üzerinde Araştırmalar. Ege Üniversitesi Ziraat Fakültesi Bilimsel Araştırmalar. Proje No: 2000/BIL/005, 2.
  • Vassilev, N., Vasileva, M.A., Nikolaeva, L., 2006. Simultaneous P Solubilizing and Biocontrol Activity of Microorganisms: Potentials and Future Trends. Applied Microbiology and Biotechnology, 71(2), 137-144.
  • Vazquez, P., Holguin, G., Puente, M., Lopez-cortes, A., Bashan, Y., 2000. Phosphate Solubilizing Microorganisms Associated With the Rhizosphere of Mangroves in a Semi-Arid Coastal Lagoon. Biol Fertil Soils, 30(5-6), 460–468.
  • Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y., Valero, J.R., 2007, Antagonistic fungi, Trichoderma spp.: Panoply of Biological Control. Biochemical Engineering Journal. 37(1), 1-20.
  • Vessey, J.K., 2003, Plant Growth Promoting Rhizobacteria as Bio Fertilizers. Plant and Soil, 255(2), 571-586.
  • Whitelaw, M.A., 2000. Growth Promotion of Plants İnoculated With Phosphate Solubilizing Fungi. Advances In Agronomy, 69, 99-151.
  • Yolcu, H., Daşcı, M., 2008. Ülkemizde Organik Yem Bitkileri Üretiminin Mevcut Durumu. Hasad Hayvancılık Dergisi. 24, 40-46.
  • Zengin, M., 2007. Organik Tarım. Hasad Yayıncılık, s 136.
  • Zhao, X.R., Lin, Q.M., 2001. A review of Phosphate Dissolving Microorganisms. Soil Fertilizer, 3, 7-11.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Songül Yılmaz This is me 0000-0003-2236-4879

Mesude Figen Dönmez 0000-0002-7992-8252

İrfan Çoruh 0000-0002-6569-6163

Project Number 2017-FBE-A26
Publication Date November 18, 2020
Submission Date November 13, 2020
Acceptance Date November 18, 2020
Published in Issue Year 2020

Cite

APA Yılmaz, S., Dönmez, M. F., & Çoruh, İ. (2020). FARKLI LOKASYONLARDA YABANİ BİTKİ TÜRLERİNDEN İZOLE EDİLEN BAKTERİLERİN TANISI VE AZOT FİKSE ETME, FOSFOR, POTASYUM VE KALSİYUM ÇÖZME ÖZELLİKLERİNİN BELİRLENMESİ. Journal of Agriculture, 3(2), 71-90. https://doi.org/10.46876/ja.825647