Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 2, 92 - 107, 31.12.2021
https://doi.org/10.46876/ja.986625

Abstract

References

  • Anonim, 2018. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. www.tuik.gov.tr Erişim Tarihi (09.12.2019)
  • Anonymous., 2018. FAO Statical Database. www.faostat.fao.org Erişim tarihi (13.04.2018)
  • Abd-Allah, F., Hashem, A., Ezzat, S.M., 2006. Lipid metabolis in tomato and bean as sensitive monitor for biocontrol of wilt diseases, Phtoparasitica, 34(5),516-522.
  • Amer G.A., Aggarwal, R., Singh, D.V., Srivastava, K.D., 1997. Interaction of Bacillus thuringiensis with Pythium ultimum and Fusarium oxysporum f. sp. lycopersici: Possible Role in Biological Control. Current Science, 3, 284–286.
  • Anandhakumar, J., Zeller, W., 2004. Investigation on the biocontrol of Phytophthora diseases on strawberry based on antagonism. 11th international conference on cultivation technique and phytopathological problems in organic fruit-growing. Proceedings of the Conference, Weinsberg, Germany 240-243.
  • Asghar, H.N., Zahir, Z.A., Arshad, M., Khaliq, A., 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L., Biology and Fertility of Soils, 35(4), 231–237.
  • Aydın, M.H., 2008. Patates yetiştiriciliğinde sorun olan Rhizoctonia solani’nin biyolojik savaşımı ve bunun kimyasal savaşla entegrasyonu. Doktora Tezi, Ege Üniversitesi, 183.
  • Aydın, M.H., Turhan, G., Göre, M.E., 2011. Patates yumrularında Rhizoctonia solani Kühn. sklerotlarının canlılığı ve oluşumu üzerine bazı antagonistlerin etkinliğinin belirlenmesi. Anadolu Journal of AARI, 21(2), 29–38.
  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266.
  • Bakalı, A.M., Martin, M.P., 2006. Black scurf of potato. Mycologist, 20,130-132.
  • Berg, G., 2007. Biological control of fungal soilborne pathogens in strawberries. Biological Control Of Plant Diseases, Chincholkar SB and Mukerji KG, The Haworth Press, United States of America, 1-16.
  • Berg, G., Fritze, A., Roskot, N., Smalla, K., 2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. Journal of Applied Microbiology, 91(6), 963-971.
  • Bora, T., Yildiz, M., Özaktan, H., 1994. Ege bölgesinde kavun ve karpuzlarda görülen Fusarium solgunluklarının antagonistik Fluoresent pseudomanas’larla önlenmesi olanakları üzerinde arastırmalar. Ege Üniversitesi Arastırma Fonu 92-ZFR-035 Sayılı Proje Kesin Raporu 26.
  • Bora, T., Özaktan, H., 1998. Bitki Hastalıklarıyla Biyolojik Savaş. Ege Üniversitesi Ziraat Fakültesi, Bitki Koruma Bölümü, İzmir 205.
  • Boudyach, E.H., Fatmi, M., Akhayat, O., Benizri, E., Ait Ben Oumar, A., 2001. Selection of antagonistic bacteria of Clavibacter michiganenesis subsp. michiganensis and eveluation of their efficiency against bacterial cancer of tomato, Biocontrol Science and Technology, 11, 141-149.
  • Bruehl, G.W., 1987. Soilborne Plant Pathogens. Macmillan, New York.
  • Caesar-TonThat, T.C., Caesar, A.J., Gaskin, J.F., Sainju, U.M., Busscher, W.J., 2007. Taxonomic diversity of predominant culturable bacteria associated with microaggregates from two different agroecosystems and their ability to aggregate soil in vitro. Applied Soil Ecology, 36(1), 10–21.
  • Carling, D.E., Kuninage, S., Brainard, K.A., 2002. Hyphal anastomosis reactions, rDNA internal transcribed spacer sequences and virulence levels among subsets of Rhizoctonia solani anastomosis group 2 (AG2) and AG-BI. Phytopathology, 92(1), 43-50.
  • Cattelan, A.J., Hartel, P.G., Fuhrmann, J.J., 1999. Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 63(6), 1670–1680.
  • Chen, C., Belanger, R.R., Benhamou, N., Paulitz, T.C., 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum, Physiological and Molecular Plant Pathology, 56(1), 13–23.
  • Compant, S., Duffy, B., Nowak, J., Clement, C., Ait Barka, E., 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology, 71(9), 4951-4959.
  • Çakmakçı, R., 2005. Bitki gelişiminde fosfat çözücü bakterilerin önemi. Selçuk Üniversitesi, Ziraat Fakültesi Dergisi, 19,93-108.
  • Çapar, E., 2012. Patateste farklı sklerot düzeylerinin Rhizoctonia solani infeksiyonlarındaki rolünün ve hastalıkla mücadelede yumru ilaçlamalarının etkinliğinin araştırılması. Yüksek Lisans Tezi, Çukurova Üniversitesi, 71.
  • Çetinkaya Yıldız, R., 2007. Domates bakteriyel solgunluk hastalığı etmeni [Clavibacter michiganensis subsp. Michiganensis (Smith) davis et. al.]’nin tanılanması ve bitki büyüme düzenleyici rizobakteriler ile biyolojik mücadele olanaklarının araştırılması. Doktora Tezi, Çukurova Üniversitesi, 191.
  • Çubukcu, N., 2007. Pamuklarda Verticillium solgunluğu (Verticillium dahliae Kleb.)’na karşı endofitik bakterilerle biyolojik mücadele. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi, 73.
  • Delen, N., 1991. Patojenlerin Fungisitlere Dayanıklılık Sorunu. TYUAP Ege-Marmara Dilimi, ABAV Toplantısı, 12-14 Mart, Menemen/İzmir.
  • Dixon, G.R., 1984. Vegetable Crop diseases. Macmillan, London.
  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Okon, Y., Vanderleyden, J., 2002. Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biology and Fertility of Soils, 36(4), 284-297.
  • Dönmez, M.F., Uysal, B., Demirci, E., Ercişli, S., Çakmakçı, R., 2015. Biological control of root rot disease caused by Rhizoctonia solani Kühn. on potato and bean using antagonist bacteria. Acta Scientiarum Polonorum Hortorum Cultus, 14 (5), 29-40.
  • Duczek, L.J., 1994. Relationship between a grenhouse and field assay for biological control of common root rot of spring wheat and barley. Canadian Plant Disease Survey, 74 (2),135-140.
  • Eken, C., Demirci E., 2004. Anastomosis groups and pathogenicity of Rhizoctonia solani and binucleate Rhizoctonia ısolates from bean in Erzurum, Turkey. Journal of Plant Pathology, 86(1), 49-52.
  • Estevez de Jensen, C., Percich, J.A., Graham, P.H., 2002. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Research, 74(2-3), 107-115.
  • Fravel, D.R., Connıck, W.J., Lewıs, J.A., 1998. Formulation of microorganisms to control plant diseases. in: Formulation of Microbial Biopesticides: beneficial microorganisms, nematodes and seed treatments. Edited by H.D. Burges. Kluwer Academic Pub, 187-202.
  • Genç, T., 2012. Erzurum ve Erzincan İllerinde çilek bitkilerinden izole edilen Verticillium dahliae Kleb.’nın vejetatif uyum grupları, patojenitesi ve biyolojik mücadelesi. Doktora Tezi, Atatürk Üniversitesi, 142.
  • Gutierrez-Manero, F.J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R., Talon, M., 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206- 211.
  • Haichar, F.Z., Marol, C., Berge, O., Rangel-Castro, J.I., Prosser, J.I., Balesdent, J., Heulin, T., Achouak W., 2008. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221-1230.
  • Hall, R., 1991. Compendium of bean diseases. APS Press, St. Paul, USA. 102.
  • Heungens, K., Parke J.L., 2000. Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Applied and Environmental Microbiology, 66(12), 5192-5200.
  • Hoitink, H.A., 1986. Basis for the control of soil borne plant pathogens with Composts. Annual Rewiev of Phytopathology, 24, 93-114.
  • Hsieh, T.F., Huang, H.C., Erickson, R.S., 2005. Biological control of bacterial wilt of bean using a bacterial endophyte, Pantoea agglomerans, Journal of Phytopathology, 1538(10), 608-614.
  • Jehtonen, M.J., 2009. Rhizoctonia solani as a potato pathogen variation of ısolates in Finland and host response. University of Helsinki Finland, Academic Dissertation in Plant Pathology, 81.
  • Kageyama, K., Nelson E.B., 2003. Differential inactiviation of seed exudates stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Applied and Enviromental Microbiology, 69(2),1114-1120.
  • Khalid, A., Arshad, M., Zahir, Z.A., 2004. Screenin plant-growth promoting rhizobacteria for improving growth and yield of wheat, Journal of Applied Microbiology, 96(3), 473-480.
  • Kılıçoğlu, M.Ç., Özkoç, İ., 2010. Molecular characterization of Rhizoctonia solani AG4 Using PCR-RFLP of the rDNA-ITS region. Turk Journal of Biology, 34(3), 261-269.
  • Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., Berg, G., 2002. Potato associated bacteria and their antagonistic potantial towards plant-pathogenic fungi and the plant parasitic nematode Meloidogyne incognita (Kofoid & White) chitwood. Canadian Journal of Microbiology, 48(9), 772-786.
  • Landa, B.B., Navas-Cortés, J.A., Jiménez-Díaza, R.M., 2004. Influence of temperature on plant rhizobacteria interactions related to biocontrol potential for suppression of Fusarium wilt of chickpea. Plant Pathology, 53(3), 341–352.
  • Larkin, R.P., Honeycutt, C.W., 2006. Effect of inoculum density and soil tillage on the development and severity of Rhizoctonia diseases of potato, Phytopathology, 96, 68-79.
  • Lehtonen, M.J., Somervuo, P., Valkonen, P.T., 2008. Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. Phytopathology, 98(11), 1190-1198.
  • Lugtenberg, B.J.J., Dekkers, L.C., 1999. What make Pseudomonas bacteria rhizosphere competent? Environmental Microbiology, 1(1), 9-13.
  • Meena, V.S., Maurya, B.R., Verma, J.P., Aeron, A., Kumar, A., Kim, K., Bajpai, V.K., 2015. Potassium solubilizing rhizobakteria (KSR); isolation, identification, and K-release dynamics from Waste Mica. Ecological Engineering, 81: 340-347.
  • Mehta, S., Nautiyal, C.S., 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43(1), 51–56.
  • Mercado-Blanco, J., Rodriguez-jurado, D., Herves, A., Jimenez-Diaz, R.M., 2004. Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biological Control, 30(2), 474–486.
  • Metraux, J.P., 2001. Systemic acquired resistance and salicylic acid current state of knowledge. European Journal of Plant Pathology, 107(1), 13-18.
  • Nandakumar, R., Babu, S., Viswanathan, R., Raguchander, T., Samiyappan, R., 2001. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry, 33(4-5), 603-612.
  • Nielsen, M.T., Sorensen, J., Fels, J., Pedersen, H.C., 1998. Secondary metabolite and endochitinase dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Applied and Environmental Microbiology, 64(10), 3563-3569.
  • Ongena, M., Duby, F., Rossignol, F., Fouconnier, M.L., Dommes, J., Thonart, P., 2004. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Molecular Plant-Microbe Interaction, 17(9), 1009-1018.
  • Papavizas, G.C., Lewis, J.A., 1983. Physiological and biocontrol characteristic of stable mutants of Trichoderma viride resistant to MBC fungicides. Phytopathology, 73,407-411.
  • Ramamoorthy, V., Raguchander, T., Samiyappan, R., 2002. Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent Pseudomonads. European Journal of Plant Pathology, 108(5), 429-441.
  • Rezzonico, F., Zala, M., Keel, C., Duffy, B., Moënne-Loccoz, Y., Défago G., 2007. Is the ability of biocontrol fluorescent Pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Physiologist, 173(4), 861-872.
  • Ryu, C.M., Farag, M.A,, Hu, C.H., Reddy, M.S., Kloepper, J.W., Pare, P.W., 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017-1026.
  • Schaad, N.W., 1994. Laboratory guide for identification of plant pathogenic bacteria. APS Press, pp. 164.
  • Shanahan, P., O’sullivan, D.J., Simpson, P., Glennon, J.D., O'Gara, F., 1992. Isolation of 2,4-Diacetylphloroglucinol from a fluorescent Pseudomonas and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58(1), 353–358.
  • Shtienberg, T., Elad, Y., 2002. Is it possible to cope with variability of biological control, IOBC/WPRS bulletin, seventh meeting of the WG: influence of A-biotic and biotic factors on the biocontrol agents, Kusadası, Turkey. 19.
  • Silva, H.S.A., Romerio, R.S., Macagnan, D., Halfeld, B.A., Pereira, M.C.B., Mounter, A., 2004. Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities, Biological Control, 29(2,) 288–295.
  • Sippell, D.W., Hall, R., 1982. Effects of pathogen species, inoculum concentration, temperature, and soil moisture on bean root rot and plant growth. Canadian Journal of Plant Pathology, 4(1), 1–7.
  • Slezack, S., Dumas Gaudot, E., Rosendahl, S., Kjoller, R., Paynot, M., Negrel, J., Gianinazzi, S., 1999. Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and Aphanomyces euteiches in relation to bioprotection. New Phytologist, 142(3), 517-529.
  • Smith, S.E., Read, D.J., 1997. Vesicular-arbuscular mycorrhizas. Mycorrhizal Symbiosis. (Editörs: Smith ES, Read DJ) Academic Press, London. 9-161.
  • Soylu, S., Soylu, E.M., Kurt, Ş., Ekici, Ö.K., 2005. Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8(1), 43-48.
  • Şahin, F., Çakmakçı, R., Kantar, F., 2004. Sugar beet and barley yields in relation to inoculation with N2-Fixing and phosphate solubilizing bacteria. Plant and Soil, 265(1), 123-129.
  • Tambong, J.T., Höfte M., 2001. Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA 1. European Journal of Plant Pathology, 107(5), 511-521.
  • Tekin, Ş., 2004. Farklı biber ekim alanlarında yetiştirilen bitkilerin rizosferlerinden izole edilen antagonist bakterilerin bazı fungal patojenlerin gelişimi üzerine etkinlikleri. Yüksek Lisan Tezi, Mustafa Kemal Üniversitesi, 52.
  • Turhan, O., 2010. Çilekte siyah kök çürüklüğü (Rhizoctonia solani Kühn.) hastalığına karşı bazı biyolojik kontrol ajanlarının etkileri. Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, 59.
  • Ulukuş, İ., 1988. The antagonistic effect of a Bacillus sp. against some bacterial and fungal plant pathogens and some antagonistic fungi. The Journal of Turkish Phytopath, 17(3), 140-141.
  • Van Loon, L.C., 1997. Induced resistance in plants and role of pathogenesis related proteins. European Journal of Plant Pathology, 103, 753-765.
  • Van Loon, L.C., Bakker, P.A.H.M., Pieterse C.M.J., 1998. Systemic resistance induced by rhizosphere bacteria. Annual Revive of Phytopathology, 36, 453-483.
  • Vessey Kewin, J., 2003. Plant growth promoting rhizobacteria as biofertilizers, Plant and Soil, 255(2), 571-586.
  • Vestberg, M., Kukkonen, S., Saari, K., Parikka, P., Huttunen, J., Tainio, L., Devos, N., Weekersn, F., Kevers, C., Thonart, P., Lemoine, M.C., Cordiwe, C., Alabouvette, C., Gianinazzi, S., 2004. Microbial inoculation for improving the growth and health of micropropagated strawberry. Applied Soil Ecology, 27, 243-258.
  • Vural, Ç., 2008. Hatay ili fasulye ekim alanlarında karşılaşılan fungal ve bakteriyel hastalık etmenlerinin belirlenmesi, Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, 49.
  • Walsh, U.F,, Morrissey, J.P., O’Gara, F., 2001. Pseudomonas for biocontrol phytopathogens: from functional genomics to commercial explotion. Current Opinion in Biotechnology, 12(3), 289-295.
  • Weller, D.M., 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379-407.
  • Willetts, H.J., Wong, J.A.L., 1980. The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S.minor with emphasis on specific nomenclature. Botanical Review, 46, 101-165.
  • Yanar, Y., Yılmaz, G., Coşkun, Ş., Çeşmeli İ., (2005). Patates çeşitlerinin Rhizoctonia solani Kühn’nin neden olduğu siyah kabukluluk hastalığına karşı reaksiyonlarının belirlenmesi. Gazi Osmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 22(2), 19-22.
  • Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K., Shirata A., 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology, 91(2), 181-187.

Biological Control of Rhizoctonia Solani Kühn. with Rhizobacteria Isolated from Different Soiland Calligonum Polygonoides L. Subsp. Comosum (L’hér.)

Year 2021, Volume: 4 Issue: 2, 92 - 107, 31.12.2021
https://doi.org/10.46876/ja.986625

Abstract

In this study, the biological control activities of the bacteria strains, which have been isolated from the volcanic, sandy, salty soils and Ebu Cehil plant Calligonum polygonoides L. subsp. comosum (L’Hér.) were investigated against isolates of Rhizoctonia solani causing root rot in beans. As the result of the isolation, 83 strains were obtained and the bacteria were identified by biochemical tests and fatty acid methyl esterase analyses. In the in vitro conditions, 20 strains from among 83 bacteria strains were found to be effective and it was determined that these strains inhibited the mycelial growth by forming a prevention zone ranging between 0.1 cm and 2.4 cm. The prevention rate of bacteria strains against pathogen isolates was found to range between 50%-66% maximum. In the in vivo conditions, the bacteria strains were found to successfully inhibit the disease development compared to the control group. Bacillus thuringiensis israelensis HV43, Bacillus subtilis HV34, Bacillus cereus GC subgroup A HT21 and Bacillus subtilis HT30 strains were determined to prevent the disease incidence with an effectiveness of 100%.

References

  • Anonim, 2018. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. www.tuik.gov.tr Erişim Tarihi (09.12.2019)
  • Anonymous., 2018. FAO Statical Database. www.faostat.fao.org Erişim tarihi (13.04.2018)
  • Abd-Allah, F., Hashem, A., Ezzat, S.M., 2006. Lipid metabolis in tomato and bean as sensitive monitor for biocontrol of wilt diseases, Phtoparasitica, 34(5),516-522.
  • Amer G.A., Aggarwal, R., Singh, D.V., Srivastava, K.D., 1997. Interaction of Bacillus thuringiensis with Pythium ultimum and Fusarium oxysporum f. sp. lycopersici: Possible Role in Biological Control. Current Science, 3, 284–286.
  • Anandhakumar, J., Zeller, W., 2004. Investigation on the biocontrol of Phytophthora diseases on strawberry based on antagonism. 11th international conference on cultivation technique and phytopathological problems in organic fruit-growing. Proceedings of the Conference, Weinsberg, Germany 240-243.
  • Asghar, H.N., Zahir, Z.A., Arshad, M., Khaliq, A., 2002. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L., Biology and Fertility of Soils, 35(4), 231–237.
  • Aydın, M.H., 2008. Patates yetiştiriciliğinde sorun olan Rhizoctonia solani’nin biyolojik savaşımı ve bunun kimyasal savaşla entegrasyonu. Doktora Tezi, Ege Üniversitesi, 183.
  • Aydın, M.H., Turhan, G., Göre, M.E., 2011. Patates yumrularında Rhizoctonia solani Kühn. sklerotlarının canlılığı ve oluşumu üzerine bazı antagonistlerin etkinliğinin belirlenmesi. Anadolu Journal of AARI, 21(2), 29–38.
  • Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266.
  • Bakalı, A.M., Martin, M.P., 2006. Black scurf of potato. Mycologist, 20,130-132.
  • Berg, G., 2007. Biological control of fungal soilborne pathogens in strawberries. Biological Control Of Plant Diseases, Chincholkar SB and Mukerji KG, The Haworth Press, United States of America, 1-16.
  • Berg, G., Fritze, A., Roskot, N., Smalla, K., 2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. Journal of Applied Microbiology, 91(6), 963-971.
  • Bora, T., Yildiz, M., Özaktan, H., 1994. Ege bölgesinde kavun ve karpuzlarda görülen Fusarium solgunluklarının antagonistik Fluoresent pseudomanas’larla önlenmesi olanakları üzerinde arastırmalar. Ege Üniversitesi Arastırma Fonu 92-ZFR-035 Sayılı Proje Kesin Raporu 26.
  • Bora, T., Özaktan, H., 1998. Bitki Hastalıklarıyla Biyolojik Savaş. Ege Üniversitesi Ziraat Fakültesi, Bitki Koruma Bölümü, İzmir 205.
  • Boudyach, E.H., Fatmi, M., Akhayat, O., Benizri, E., Ait Ben Oumar, A., 2001. Selection of antagonistic bacteria of Clavibacter michiganenesis subsp. michiganensis and eveluation of their efficiency against bacterial cancer of tomato, Biocontrol Science and Technology, 11, 141-149.
  • Bruehl, G.W., 1987. Soilborne Plant Pathogens. Macmillan, New York.
  • Caesar-TonThat, T.C., Caesar, A.J., Gaskin, J.F., Sainju, U.M., Busscher, W.J., 2007. Taxonomic diversity of predominant culturable bacteria associated with microaggregates from two different agroecosystems and their ability to aggregate soil in vitro. Applied Soil Ecology, 36(1), 10–21.
  • Carling, D.E., Kuninage, S., Brainard, K.A., 2002. Hyphal anastomosis reactions, rDNA internal transcribed spacer sequences and virulence levels among subsets of Rhizoctonia solani anastomosis group 2 (AG2) and AG-BI. Phytopathology, 92(1), 43-50.
  • Cattelan, A.J., Hartel, P.G., Fuhrmann, J.J., 1999. Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 63(6), 1670–1680.
  • Chen, C., Belanger, R.R., Benhamou, N., Paulitz, T.C., 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum, Physiological and Molecular Plant Pathology, 56(1), 13–23.
  • Compant, S., Duffy, B., Nowak, J., Clement, C., Ait Barka, E., 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology, 71(9), 4951-4959.
  • Çakmakçı, R., 2005. Bitki gelişiminde fosfat çözücü bakterilerin önemi. Selçuk Üniversitesi, Ziraat Fakültesi Dergisi, 19,93-108.
  • Çapar, E., 2012. Patateste farklı sklerot düzeylerinin Rhizoctonia solani infeksiyonlarındaki rolünün ve hastalıkla mücadelede yumru ilaçlamalarının etkinliğinin araştırılması. Yüksek Lisans Tezi, Çukurova Üniversitesi, 71.
  • Çetinkaya Yıldız, R., 2007. Domates bakteriyel solgunluk hastalığı etmeni [Clavibacter michiganensis subsp. Michiganensis (Smith) davis et. al.]’nin tanılanması ve bitki büyüme düzenleyici rizobakteriler ile biyolojik mücadele olanaklarının araştırılması. Doktora Tezi, Çukurova Üniversitesi, 191.
  • Çubukcu, N., 2007. Pamuklarda Verticillium solgunluğu (Verticillium dahliae Kleb.)’na karşı endofitik bakterilerle biyolojik mücadele. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi, 73.
  • Delen, N., 1991. Patojenlerin Fungisitlere Dayanıklılık Sorunu. TYUAP Ege-Marmara Dilimi, ABAV Toplantısı, 12-14 Mart, Menemen/İzmir.
  • Dixon, G.R., 1984. Vegetable Crop diseases. Macmillan, London.
  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Okon, Y., Vanderleyden, J., 2002. Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biology and Fertility of Soils, 36(4), 284-297.
  • Dönmez, M.F., Uysal, B., Demirci, E., Ercişli, S., Çakmakçı, R., 2015. Biological control of root rot disease caused by Rhizoctonia solani Kühn. on potato and bean using antagonist bacteria. Acta Scientiarum Polonorum Hortorum Cultus, 14 (5), 29-40.
  • Duczek, L.J., 1994. Relationship between a grenhouse and field assay for biological control of common root rot of spring wheat and barley. Canadian Plant Disease Survey, 74 (2),135-140.
  • Eken, C., Demirci E., 2004. Anastomosis groups and pathogenicity of Rhizoctonia solani and binucleate Rhizoctonia ısolates from bean in Erzurum, Turkey. Journal of Plant Pathology, 86(1), 49-52.
  • Estevez de Jensen, C., Percich, J.A., Graham, P.H., 2002. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Research, 74(2-3), 107-115.
  • Fravel, D.R., Connıck, W.J., Lewıs, J.A., 1998. Formulation of microorganisms to control plant diseases. in: Formulation of Microbial Biopesticides: beneficial microorganisms, nematodes and seed treatments. Edited by H.D. Burges. Kluwer Academic Pub, 187-202.
  • Genç, T., 2012. Erzurum ve Erzincan İllerinde çilek bitkilerinden izole edilen Verticillium dahliae Kleb.’nın vejetatif uyum grupları, patojenitesi ve biyolojik mücadelesi. Doktora Tezi, Atatürk Üniversitesi, 142.
  • Gutierrez-Manero, F.J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F.R., Talon, M., 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206- 211.
  • Haichar, F.Z., Marol, C., Berge, O., Rangel-Castro, J.I., Prosser, J.I., Balesdent, J., Heulin, T., Achouak W., 2008. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2(12), 1221-1230.
  • Hall, R., 1991. Compendium of bean diseases. APS Press, St. Paul, USA. 102.
  • Heungens, K., Parke J.L., 2000. Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Applied and Environmental Microbiology, 66(12), 5192-5200.
  • Hoitink, H.A., 1986. Basis for the control of soil borne plant pathogens with Composts. Annual Rewiev of Phytopathology, 24, 93-114.
  • Hsieh, T.F., Huang, H.C., Erickson, R.S., 2005. Biological control of bacterial wilt of bean using a bacterial endophyte, Pantoea agglomerans, Journal of Phytopathology, 1538(10), 608-614.
  • Jehtonen, M.J., 2009. Rhizoctonia solani as a potato pathogen variation of ısolates in Finland and host response. University of Helsinki Finland, Academic Dissertation in Plant Pathology, 81.
  • Kageyama, K., Nelson E.B., 2003. Differential inactiviation of seed exudates stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Applied and Enviromental Microbiology, 69(2),1114-1120.
  • Khalid, A., Arshad, M., Zahir, Z.A., 2004. Screenin plant-growth promoting rhizobacteria for improving growth and yield of wheat, Journal of Applied Microbiology, 96(3), 473-480.
  • Kılıçoğlu, M.Ç., Özkoç, İ., 2010. Molecular characterization of Rhizoctonia solani AG4 Using PCR-RFLP of the rDNA-ITS region. Turk Journal of Biology, 34(3), 261-269.
  • Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., Berg, G., 2002. Potato associated bacteria and their antagonistic potantial towards plant-pathogenic fungi and the plant parasitic nematode Meloidogyne incognita (Kofoid & White) chitwood. Canadian Journal of Microbiology, 48(9), 772-786.
  • Landa, B.B., Navas-Cortés, J.A., Jiménez-Díaza, R.M., 2004. Influence of temperature on plant rhizobacteria interactions related to biocontrol potential for suppression of Fusarium wilt of chickpea. Plant Pathology, 53(3), 341–352.
  • Larkin, R.P., Honeycutt, C.W., 2006. Effect of inoculum density and soil tillage on the development and severity of Rhizoctonia diseases of potato, Phytopathology, 96, 68-79.
  • Lehtonen, M.J., Somervuo, P., Valkonen, P.T., 2008. Infection with Rhizoctonia solani induces defense genes and systemic resistance in potato sprouts grown without light. Phytopathology, 98(11), 1190-1198.
  • Lugtenberg, B.J.J., Dekkers, L.C., 1999. What make Pseudomonas bacteria rhizosphere competent? Environmental Microbiology, 1(1), 9-13.
  • Meena, V.S., Maurya, B.R., Verma, J.P., Aeron, A., Kumar, A., Kim, K., Bajpai, V.K., 2015. Potassium solubilizing rhizobakteria (KSR); isolation, identification, and K-release dynamics from Waste Mica. Ecological Engineering, 81: 340-347.
  • Mehta, S., Nautiyal, C.S., 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43(1), 51–56.
  • Mercado-Blanco, J., Rodriguez-jurado, D., Herves, A., Jimenez-Diaz, R.M., 2004. Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biological Control, 30(2), 474–486.
  • Metraux, J.P., 2001. Systemic acquired resistance and salicylic acid current state of knowledge. European Journal of Plant Pathology, 107(1), 13-18.
  • Nandakumar, R., Babu, S., Viswanathan, R., Raguchander, T., Samiyappan, R., 2001. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry, 33(4-5), 603-612.
  • Nielsen, M.T., Sorensen, J., Fels, J., Pedersen, H.C., 1998. Secondary metabolite and endochitinase dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Applied and Environmental Microbiology, 64(10), 3563-3569.
  • Ongena, M., Duby, F., Rossignol, F., Fouconnier, M.L., Dommes, J., Thonart, P., 2004. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Molecular Plant-Microbe Interaction, 17(9), 1009-1018.
  • Papavizas, G.C., Lewis, J.A., 1983. Physiological and biocontrol characteristic of stable mutants of Trichoderma viride resistant to MBC fungicides. Phytopathology, 73,407-411.
  • Ramamoorthy, V., Raguchander, T., Samiyappan, R., 2002. Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent Pseudomonads. European Journal of Plant Pathology, 108(5), 429-441.
  • Rezzonico, F., Zala, M., Keel, C., Duffy, B., Moënne-Loccoz, Y., Défago G., 2007. Is the ability of biocontrol fluorescent Pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection? New Physiologist, 173(4), 861-872.
  • Ryu, C.M., Farag, M.A,, Hu, C.H., Reddy, M.S., Kloepper, J.W., Pare, P.W., 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017-1026.
  • Schaad, N.W., 1994. Laboratory guide for identification of plant pathogenic bacteria. APS Press, pp. 164.
  • Shanahan, P., O’sullivan, D.J., Simpson, P., Glennon, J.D., O'Gara, F., 1992. Isolation of 2,4-Diacetylphloroglucinol from a fluorescent Pseudomonas and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58(1), 353–358.
  • Shtienberg, T., Elad, Y., 2002. Is it possible to cope with variability of biological control, IOBC/WPRS bulletin, seventh meeting of the WG: influence of A-biotic and biotic factors on the biocontrol agents, Kusadası, Turkey. 19.
  • Silva, H.S.A., Romerio, R.S., Macagnan, D., Halfeld, B.A., Pereira, M.C.B., Mounter, A., 2004. Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities, Biological Control, 29(2,) 288–295.
  • Sippell, D.W., Hall, R., 1982. Effects of pathogen species, inoculum concentration, temperature, and soil moisture on bean root rot and plant growth. Canadian Journal of Plant Pathology, 4(1), 1–7.
  • Slezack, S., Dumas Gaudot, E., Rosendahl, S., Kjoller, R., Paynot, M., Negrel, J., Gianinazzi, S., 1999. Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and Aphanomyces euteiches in relation to bioprotection. New Phytologist, 142(3), 517-529.
  • Smith, S.E., Read, D.J., 1997. Vesicular-arbuscular mycorrhizas. Mycorrhizal Symbiosis. (Editörs: Smith ES, Read DJ) Academic Press, London. 9-161.
  • Soylu, S., Soylu, E.M., Kurt, Ş., Ekici, Ö.K., 2005. Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8(1), 43-48.
  • Şahin, F., Çakmakçı, R., Kantar, F., 2004. Sugar beet and barley yields in relation to inoculation with N2-Fixing and phosphate solubilizing bacteria. Plant and Soil, 265(1), 123-129.
  • Tambong, J.T., Höfte M., 2001. Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA 1. European Journal of Plant Pathology, 107(5), 511-521.
  • Tekin, Ş., 2004. Farklı biber ekim alanlarında yetiştirilen bitkilerin rizosferlerinden izole edilen antagonist bakterilerin bazı fungal patojenlerin gelişimi üzerine etkinlikleri. Yüksek Lisan Tezi, Mustafa Kemal Üniversitesi, 52.
  • Turhan, O., 2010. Çilekte siyah kök çürüklüğü (Rhizoctonia solani Kühn.) hastalığına karşı bazı biyolojik kontrol ajanlarının etkileri. Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, 59.
  • Ulukuş, İ., 1988. The antagonistic effect of a Bacillus sp. against some bacterial and fungal plant pathogens and some antagonistic fungi. The Journal of Turkish Phytopath, 17(3), 140-141.
  • Van Loon, L.C., 1997. Induced resistance in plants and role of pathogenesis related proteins. European Journal of Plant Pathology, 103, 753-765.
  • Van Loon, L.C., Bakker, P.A.H.M., Pieterse C.M.J., 1998. Systemic resistance induced by rhizosphere bacteria. Annual Revive of Phytopathology, 36, 453-483.
  • Vessey Kewin, J., 2003. Plant growth promoting rhizobacteria as biofertilizers, Plant and Soil, 255(2), 571-586.
  • Vestberg, M., Kukkonen, S., Saari, K., Parikka, P., Huttunen, J., Tainio, L., Devos, N., Weekersn, F., Kevers, C., Thonart, P., Lemoine, M.C., Cordiwe, C., Alabouvette, C., Gianinazzi, S., 2004. Microbial inoculation for improving the growth and health of micropropagated strawberry. Applied Soil Ecology, 27, 243-258.
  • Vural, Ç., 2008. Hatay ili fasulye ekim alanlarında karşılaşılan fungal ve bakteriyel hastalık etmenlerinin belirlenmesi, Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, 49.
  • Walsh, U.F,, Morrissey, J.P., O’Gara, F., 2001. Pseudomonas for biocontrol phytopathogens: from functional genomics to commercial explotion. Current Opinion in Biotechnology, 12(3), 289-295.
  • Weller, D.M., 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379-407.
  • Willetts, H.J., Wong, J.A.L., 1980. The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S.minor with emphasis on specific nomenclature. Botanical Review, 46, 101-165.
  • Yanar, Y., Yılmaz, G., Coşkun, Ş., Çeşmeli İ., (2005). Patates çeşitlerinin Rhizoctonia solani Kühn’nin neden olduğu siyah kabukluluk hastalığına karşı reaksiyonlarının belirlenmesi. Gazi Osmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 22(2), 19-22.
  • Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K., Shirata A., 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology, 91(2), 181-187.
There are 83 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Halit Anak 0000-0001-6606-4646

Mesude Figen Dönmez 0000-0002-7992-8252

İrfan Çoruh 0000-0002-6569-6163

Early Pub Date December 28, 2021
Publication Date December 31, 2021
Submission Date August 24, 2021
Acceptance Date November 23, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Anak, H., Dönmez, M. F., & Çoruh, İ. (2021). Biological Control of Rhizoctonia Solani Kühn. with Rhizobacteria Isolated from Different Soiland Calligonum Polygonoides L. Subsp. Comosum (L’hér.). Journal of Agriculture, 4(2), 92-107. https://doi.org/10.46876/ja.986625