Research Article
BibTex RIS Cite

Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors

Year 2017, Volume: 11 Issue: 1, 54 - 57, 30.04.2017

Abstract

Obsessive Compulsive Disorder is a mental disorder characterized by obsessions and/or compulsions. In order to understand underlying the mechanism of obsessive compulsive disorder, scientists apply animal tests. Animal tests of obsessive compulsive disorder (OCD) include genetic, pharmacological and behavior tests. Marble burying test is unconditioned OCD test. Our aim is to investigate marble burying test in terms of biological and non-biological factors.

References

  • [1] Qiu L, Fu X, Wang S, Tang Q, Chen X, Cheng L, Zhang F, Zhou Z, Tian L. 2017. Abnormal regional spontaneous neuronal activity associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder revealed by resting-state functional MRI. Neurosci Lett. 15; 640: 99-104.
  • [2] Wang L, Simpson HB., and Dulawaa SC. Assessing the validity of current mouse genetic models of obsessive–compulsive disorder. 2009. Behav Pharmacol. 20(2): 119–133.
  • [3] Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JR, den Boer JA, Fineberg NA, Knapp M, Scott J, Wittchen HU. 2005. Evidence-based guidelines for the pharmacological treatment of anxiety disorders: recommendations from the British Association for Psychopharmacology. J Psychopharmacol. 19(6):567-96.
  • [4] Murray, CJ, Lopez, AD. 1996. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Cambridge, MA: Harvard University Press.
  • [5] Deacon RM J. 2006. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nature Protocols. 1(1): 122-124.
  • [6] Greer JM, Capecchi MR. 2002. Hoxb8 is required for normal grooming behavior in mice. Neuron. 33(1):23 – 34.
  • [7] Çalışkan H, Çakan O, Uzunkulaoğlu M, Kankal S, Özden FM, Cihan KH, Şentunalı B, Zaloğlu N. 2017. 2. National Congress on Applied Biological Sciences. Poster Presentation. No: 18.
  • [8] Pandey DK, Yadav SK, Mahesh R, Rajkumar R. 2009. Depression-like and anxiety-like behavioural aftermaths of impact accelerated traumatic brain injury in rats: a model of comorbid depression and anxiety. Behav Brain Res. 205(2):436-42.
  • [9] Fodor A, Kovács KB, Balázsfi D, Klausz B, Pintér O, Demeter K, Daviu N, Rabasa C, Rotllant D, Nadal R, Zelena D. 2016. Depressive- and anxiety-like behaviors and stressrelated neuronal activation in vasopressin-deficient female Brattleboro rats. Physiol Behav. 158:100-11.
  • [10] Ikeno T, Deats SP, Soler J, Lonstein JS, Yan L. 2016. Decreased daytime illumination leads to anxiety-like behaviors and HPA axis dysregulation in the diurnal grass rat (Arvicanthis niloticus). Behav Brain Res. 300: 77-84.
  • [11] Mannucci C1, Navarra M, Calzavara E, Caputi AP, Calapai G. 2012. Serotonin involvement in Rhodiola rosea attenuation of nicotine withdrawal signs in rats. Phytomedicine. 19(12):1117-24.
  • [12] Burke NN, Coppinger J, Deaver DR, Roche M, Finn DP, Kelly J. 2016. Sex differences and similarities in depressive- and anxiety-like behaviour in the Wistar-Kyoto rat. Physiol Behav. 167:28-34.
  • [13] Lotan D, Cunningham M, Joel D. 2014. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS One. 9(6):e101257.
  • [14] Salunke BP, Umathe SN, Chavan JG. 2014. Experimental evidence for involvement of nitric oxide in low frequency magnetic field induced obsessive compulsive disorder-like behavior. Pharmacol Biochem Behav. 122:273-8.
  • [15] Hodgson RA, Higgins GA, Guthrie DH, Lu SX, Pond AJ, Mullins DE, Guzzi MF, Parker EM, Varty GB. 2007. Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav. 86(3):431-40.
  • [16] Popova NK, Morozova MV, Naumenko VS. 2011. Ameliorative effect of BDNF on prenatal ethanol and stress exposure-induced behavioral disorders. Neurosci Lett. 505(2):82-6.
  • [17] Farley S, Apazoglou K, Witkin JM, Giros B, Tzavara ET. 2010. Antidepressant-like effects of an AMPA receptor potentiator under a chronic mild stress paradigm. Int J Neuropsychopharmacol. 13(9):1207-18.
  • [18]. Chioca LR, Ferro MM, Baretta IP, Oliveira SM, Silva CR, Ferreira J, Losso EM, Andreatini R. 2013. Anxiolytic- like effect of lavender essential oil inhalation in mice: participation of serotonergic but not GABAA/benzodiazepine neurotransmission. J Ethnopharmacol. 147(2):412-8.
  • [19] Andreasen JT, Redrobe JP, Nielsen EØ, Christensen JK, Olsen GM, Peters D. 2013. A combined α7 nicotinic acetylcholine receptor agonist and monoamine reuptake inhibitor, NS9775, represents a novel profile with potential benefits in emotional and cognitive disturbances. Neuropharmacology. 73:183-91.
  • [20] Beis D, Schwarting RK, Dietrich A. 2011. Evidence for a supportive role of classical transient receptor potential 6 (TRPC6) in the exploration behavior of mice. Physiol Behav. 102(2):245-50.
  • [21] Sawin EA, Murali SG, Ney DM. 2014. Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pah(enu2) mice. Mol Genet Metab. 111(4):452-61.
  • [22] Chikahisa S, Sano A, Kitaoka K, Miyamoto K, Sei H. 2007. Anxiolytic effect of music depends on ovarian steroid in female mice. Behav Brain Res. 179(1):50-9.
  • [23] Arora T, Bhowmik M, Khanam R, Vohora D. 2013. Oxcarbazepine and fluoxetine protect against mouse models of obsessive compulsive disorder through modulation of cortical serotonin and CREB pathway. Behav Brain Res. 247:146-52.
  • [24] Elston TW, Pandian A, Smith GD, Holley AJ, Gao N, Lugo JN. 2014. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice. PLoS One. 6;9(8):e104443.
  • [25] De Filippis B, Nativio P, Fabbri A, Ricceri L, Adriani W, Lacivita E, Leopoldo M, Passarelli F, Fuso A, Laviola G. 2014. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology. 39(11):2506-18.
  • [26] Dagytė G, Crescente I, Postema F, Seguin L, Gabriel C, Mocaër E, Boer JA, Koolhaas JM. 2011. Agomelatine reverses the decrease in hippocampal cell survival induced by chronic mild stress. Behav Brain Res. 218(1):121-8.
  • [27] Young R, Batkai S, Dukat M, Glennon RA. 2006. TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline) exhibits anxiolytic-like activity in a marble-burying assay in mice. Pharmacol Biochem Behav. 84(1):62-73.
  • [28] Weidner KL, Buenaventura DF, Chadman KK. 2014. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age. Behav Brain Res. 15;268:222-8.
  • [29] Onksen JL, Brown EJ, Blendy JA. 2011. Selective deletion of a cell cycle checkpoint kinase (ATR) reduces neurogenesis and alters responses in rodent models of behavioral affect. Neuropsychopharmacology. 36(5):960-9.
  • [30] Gupta D, Radhakrishnan M, Kurhe Y. 2014. Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety. Eur J Pharmacol. 742:94-101.
  • [31] Colla AR, Rosa JM, Cunha MP, Rodrigues AL. 2015. Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol. 758:171-6.
  • [32] Bahi A. 2013. Individual differences in elevated plus-maze exploration predicted higher ethanol consumption and preference in outbred mice. Pharmacol Biochem Behav. 105: 83-8.
  • [33] Gallo I, Rattazzi L, Piras G, Gobbetti T, Panza E, Perretti M, Dalley JW, D’Acquisto F. 2014. Formyl peptide receptor as a novel therapeutic target for anxiety-related disorders. PLoS One. 17;9(12):e114626.
  • [34] Savignac HM, Kiely B, Dinan TG, Cryan JF. 2014. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. 26(11):1615-27.
  • [35] Schwartzer JJ, Careaga M, Chang C, Onore CE, Ashwood P. 2015. Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice. Transl Psychiatry. 7;5:e543.
Year 2017, Volume: 11 Issue: 1, 54 - 57, 30.04.2017

Abstract

References

  • [1] Qiu L, Fu X, Wang S, Tang Q, Chen X, Cheng L, Zhang F, Zhou Z, Tian L. 2017. Abnormal regional spontaneous neuronal activity associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder revealed by resting-state functional MRI. Neurosci Lett. 15; 640: 99-104.
  • [2] Wang L, Simpson HB., and Dulawaa SC. Assessing the validity of current mouse genetic models of obsessive–compulsive disorder. 2009. Behav Pharmacol. 20(2): 119–133.
  • [3] Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JR, den Boer JA, Fineberg NA, Knapp M, Scott J, Wittchen HU. 2005. Evidence-based guidelines for the pharmacological treatment of anxiety disorders: recommendations from the British Association for Psychopharmacology. J Psychopharmacol. 19(6):567-96.
  • [4] Murray, CJ, Lopez, AD. 1996. The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Cambridge, MA: Harvard University Press.
  • [5] Deacon RM J. 2006. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nature Protocols. 1(1): 122-124.
  • [6] Greer JM, Capecchi MR. 2002. Hoxb8 is required for normal grooming behavior in mice. Neuron. 33(1):23 – 34.
  • [7] Çalışkan H, Çakan O, Uzunkulaoğlu M, Kankal S, Özden FM, Cihan KH, Şentunalı B, Zaloğlu N. 2017. 2. National Congress on Applied Biological Sciences. Poster Presentation. No: 18.
  • [8] Pandey DK, Yadav SK, Mahesh R, Rajkumar R. 2009. Depression-like and anxiety-like behavioural aftermaths of impact accelerated traumatic brain injury in rats: a model of comorbid depression and anxiety. Behav Brain Res. 205(2):436-42.
  • [9] Fodor A, Kovács KB, Balázsfi D, Klausz B, Pintér O, Demeter K, Daviu N, Rabasa C, Rotllant D, Nadal R, Zelena D. 2016. Depressive- and anxiety-like behaviors and stressrelated neuronal activation in vasopressin-deficient female Brattleboro rats. Physiol Behav. 158:100-11.
  • [10] Ikeno T, Deats SP, Soler J, Lonstein JS, Yan L. 2016. Decreased daytime illumination leads to anxiety-like behaviors and HPA axis dysregulation in the diurnal grass rat (Arvicanthis niloticus). Behav Brain Res. 300: 77-84.
  • [11] Mannucci C1, Navarra M, Calzavara E, Caputi AP, Calapai G. 2012. Serotonin involvement in Rhodiola rosea attenuation of nicotine withdrawal signs in rats. Phytomedicine. 19(12):1117-24.
  • [12] Burke NN, Coppinger J, Deaver DR, Roche M, Finn DP, Kelly J. 2016. Sex differences and similarities in depressive- and anxiety-like behaviour in the Wistar-Kyoto rat. Physiol Behav. 167:28-34.
  • [13] Lotan D, Cunningham M, Joel D. 2014. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS One. 9(6):e101257.
  • [14] Salunke BP, Umathe SN, Chavan JG. 2014. Experimental evidence for involvement of nitric oxide in low frequency magnetic field induced obsessive compulsive disorder-like behavior. Pharmacol Biochem Behav. 122:273-8.
  • [15] Hodgson RA, Higgins GA, Guthrie DH, Lu SX, Pond AJ, Mullins DE, Guzzi MF, Parker EM, Varty GB. 2007. Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol Biochem Behav. 86(3):431-40.
  • [16] Popova NK, Morozova MV, Naumenko VS. 2011. Ameliorative effect of BDNF on prenatal ethanol and stress exposure-induced behavioral disorders. Neurosci Lett. 505(2):82-6.
  • [17] Farley S, Apazoglou K, Witkin JM, Giros B, Tzavara ET. 2010. Antidepressant-like effects of an AMPA receptor potentiator under a chronic mild stress paradigm. Int J Neuropsychopharmacol. 13(9):1207-18.
  • [18]. Chioca LR, Ferro MM, Baretta IP, Oliveira SM, Silva CR, Ferreira J, Losso EM, Andreatini R. 2013. Anxiolytic- like effect of lavender essential oil inhalation in mice: participation of serotonergic but not GABAA/benzodiazepine neurotransmission. J Ethnopharmacol. 147(2):412-8.
  • [19] Andreasen JT, Redrobe JP, Nielsen EØ, Christensen JK, Olsen GM, Peters D. 2013. A combined α7 nicotinic acetylcholine receptor agonist and monoamine reuptake inhibitor, NS9775, represents a novel profile with potential benefits in emotional and cognitive disturbances. Neuropharmacology. 73:183-91.
  • [20] Beis D, Schwarting RK, Dietrich A. 2011. Evidence for a supportive role of classical transient receptor potential 6 (TRPC6) in the exploration behavior of mice. Physiol Behav. 102(2):245-50.
  • [21] Sawin EA, Murali SG, Ney DM. 2014. Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pah(enu2) mice. Mol Genet Metab. 111(4):452-61.
  • [22] Chikahisa S, Sano A, Kitaoka K, Miyamoto K, Sei H. 2007. Anxiolytic effect of music depends on ovarian steroid in female mice. Behav Brain Res. 179(1):50-9.
  • [23] Arora T, Bhowmik M, Khanam R, Vohora D. 2013. Oxcarbazepine and fluoxetine protect against mouse models of obsessive compulsive disorder through modulation of cortical serotonin and CREB pathway. Behav Brain Res. 247:146-52.
  • [24] Elston TW, Pandian A, Smith GD, Holley AJ, Gao N, Lugo JN. 2014. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice. PLoS One. 6;9(8):e104443.
  • [25] De Filippis B, Nativio P, Fabbri A, Ricceri L, Adriani W, Lacivita E, Leopoldo M, Passarelli F, Fuso A, Laviola G. 2014. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology. 39(11):2506-18.
  • [26] Dagytė G, Crescente I, Postema F, Seguin L, Gabriel C, Mocaër E, Boer JA, Koolhaas JM. 2011. Agomelatine reverses the decrease in hippocampal cell survival induced by chronic mild stress. Behav Brain Res. 218(1):121-8.
  • [27] Young R, Batkai S, Dukat M, Glennon RA. 2006. TDIQ (5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline) exhibits anxiolytic-like activity in a marble-burying assay in mice. Pharmacol Biochem Behav. 84(1):62-73.
  • [28] Weidner KL, Buenaventura DF, Chadman KK. 2014. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age. Behav Brain Res. 15;268:222-8.
  • [29] Onksen JL, Brown EJ, Blendy JA. 2011. Selective deletion of a cell cycle checkpoint kinase (ATR) reduces neurogenesis and alters responses in rodent models of behavioral affect. Neuropsychopharmacology. 36(5):960-9.
  • [30] Gupta D, Radhakrishnan M, Kurhe Y. 2014. Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety. Eur J Pharmacol. 742:94-101.
  • [31] Colla AR, Rosa JM, Cunha MP, Rodrigues AL. 2015. Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol. 758:171-6.
  • [32] Bahi A. 2013. Individual differences in elevated plus-maze exploration predicted higher ethanol consumption and preference in outbred mice. Pharmacol Biochem Behav. 105: 83-8.
  • [33] Gallo I, Rattazzi L, Piras G, Gobbetti T, Panza E, Perretti M, Dalley JW, D’Acquisto F. 2014. Formyl peptide receptor as a novel therapeutic target for anxiety-related disorders. PLoS One. 17;9(12):e114626.
  • [34] Savignac HM, Kiely B, Dinan TG, Cryan JF. 2014. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. 26(11):1615-27.
  • [35] Schwartzer JJ, Careaga M, Chang C, Onore CE, Ashwood P. 2015. Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice. Transl Psychiatry. 7;5:e543.
There are 35 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Hasan Çalışkan This is me

Bilge Şentunalı This is me

Furkan Mehmet Özden This is me

Koray Hamza Cihan This is me

Mert Uzunkulaoğlu This is me

Onur Çakan This is me

Sümeyye Kankal

Nezahat Zaloğlu This is me

Publication Date April 30, 2017
Published in Issue Year 2017 Volume: 11 Issue: 1

Cite

APA Çalışkan, H., Şentunalı, B., Özden, F. M., Cihan, K. H., et al. (2017). Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors. Journal of Applied Biological Sciences, 11(1), 54-57.
AMA Çalışkan H, Şentunalı B, Özden FM, Cihan KH, Uzunkulaoğlu M, Çakan O, Kankal S, Zaloğlu N. Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors. J.appl.biol.sci. April 2017;11(1):54-57.
Chicago Çalışkan, Hasan, Bilge Şentunalı, Furkan Mehmet Özden, Koray Hamza Cihan, Mert Uzunkulaoğlu, Onur Çakan, Sümeyye Kankal, and Nezahat Zaloğlu. “Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors”. Journal of Applied Biological Sciences 11, no. 1 (April 2017): 54-57.
EndNote Çalışkan H, Şentunalı B, Özden FM, Cihan KH, Uzunkulaoğlu M, Çakan O, Kankal S, Zaloğlu N (April 1, 2017) Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors. Journal of Applied Biological Sciences 11 1 54–57.
IEEE H. Çalışkan, “Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors”, J.appl.biol.sci., vol. 11, no. 1, pp. 54–57, 2017.
ISNAD Çalışkan, Hasan et al. “Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors”. Journal of Applied Biological Sciences 11/1 (April 2017), 54-57.
JAMA Çalışkan H, Şentunalı B, Özden FM, Cihan KH, Uzunkulaoğlu M, Çakan O, Kankal S, Zaloğlu N. Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors. J.appl.biol.sci. 2017;11:54–57.
MLA Çalışkan, Hasan et al. “Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors”. Journal of Applied Biological Sciences, vol. 11, no. 1, 2017, pp. 54-57.
Vancouver Çalışkan H, Şentunalı B, Özden FM, Cihan KH, Uzunkulaoğlu M, Çakan O, Kankal S, Zaloğlu N. Marble Burying Test Analysis in Terms of Biological and Non-Biological Factors. J.appl.biol.sci. 2017;11(1):54-7.