Research Article
BibTex RIS Cite

Codes over an infinite family of algebras

Year 2017, , 131 - 140, 10.01.2017
https://doi.org/10.13069/jacodesmath.284947

Abstract

In this paper, we will show some properties of codes over the ring $B_k=\mathbb{F}_p[v_1,\dots,v_k]/(v_i^2=v_i,\forall i=1,\dots,k).$ These rings, form a family of commutative algebras over finite field $\mathbb{F}_p$. We first discuss
about the form of maximal ideals and characterization of automorphisms for the ring $B_k$. Then, we define certain Gray map which can be used to
give a connection between codes over $B_k$ and codes over $\mathbb{F}_p$. Using the previous connection, we give a characterization for equivalence of
codes over $B_k$ and Euclidean self-dual codes. Furthermore, we give generators for invariant ring of Euclidean self-dual codes over $B_k$ through
MacWilliams relation of Hamming weight enumerator for such codes.

References

  • [1] T. Abualrub, N. Aydin, P. Seneviratne, On $\theta-$cyclic codes over F2 + vF2; Australas. J. Combin. 54 (2012) 115–126.
  • [2] Y. Cengellenmis, A. Dertli, S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr. 72(3) (2014) 559–580.
  • [3] J. Gao, Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform. 31(3–4) (2013) 337–342.
  • [4] A.R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z4–linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301–319.
  • [5] W. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
  • [6] Irwansyah, I. Muchtadi–Alamsyah, A. Muchlis, A. Barra, D. Suprijanto, Construction of $\theta$–cyclic codes over an algebra of order 4, Proceeding of the Third International Conference on Computation for Science and Technology (ICCST–3), Atlantis Press, 2015.
  • [7] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121(3) (1999) 555–575.
Year 2017, , 131 - 140, 10.01.2017
https://doi.org/10.13069/jacodesmath.284947

Abstract

References

  • [1] T. Abualrub, N. Aydin, P. Seneviratne, On $\theta-$cyclic codes over F2 + vF2; Australas. J. Combin. 54 (2012) 115–126.
  • [2] Y. Cengellenmis, A. Dertli, S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr. 72(3) (2014) 559–580.
  • [3] J. Gao, Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform. 31(3–4) (2013) 337–342.
  • [4] A.R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z4–linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301–319.
  • [5] W. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
  • [6] Irwansyah, I. Muchtadi–Alamsyah, A. Muchlis, A. Barra, D. Suprijanto, Construction of $\theta$–cyclic codes over an algebra of order 4, Proceeding of the Third International Conference on Computation for Science and Technology (ICCST–3), Atlantis Press, 2015.
  • [7] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121(3) (1999) 555–575.
There are 7 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

- Irwansyah

İntan Muchtadi-alamsyah This is me

Ahmad Muchlis This is me

Aleams Barra This is me

Djoko Suprijanto This is me

Publication Date January 10, 2017
Published in Issue Year 2017

Cite

APA Irwansyah, .-., Muchtadi-alamsyah, İ., Muchlis, A., Barra, A., et al. (2017). Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications, 4(2 (Special Issue: Noncommutative rings and their applications), 131-140. https://doi.org/10.13069/jacodesmath.284947
AMA Irwansyah, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D. Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications. May 2017;4(2 (Special Issue: Noncommutative rings and their applications):131-140. doi:10.13069/jacodesmath.284947
Chicago Irwansyah, -, İntan Muchtadi-alamsyah, Ahmad Muchlis, Aleams Barra, and Djoko Suprijanto. “Codes over an Infinite Family of Algebras”. Journal of Algebra Combinatorics Discrete Structures and Applications 4, no. 2 (Special Issue: Noncommutative rings and their applications) (May 2017): 131-40. https://doi.org/10.13069/jacodesmath.284947.
EndNote Irwansyah -, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D (May 1, 2017) Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications 4 2 (Special Issue: Noncommutative rings and their applications) 131–140.
IEEE .-. Irwansyah, İ. Muchtadi-alamsyah, A. Muchlis, A. Barra, and D. Suprijanto, “Codes over an infinite family of algebras”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 2 (Special Issue: Noncommutative rings and their applications), pp. 131–140, 2017, doi: 10.13069/jacodesmath.284947.
ISNAD Irwansyah, - et al. “Codes over an Infinite Family of Algebras”. Journal of Algebra Combinatorics Discrete Structures and Applications 4/2 (Special Issue: Noncommutative rings and their applications) (May 2017), 131-140. https://doi.org/10.13069/jacodesmath.284947.
JAMA Irwansyah -, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D. Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4:131–140.
MLA Irwansyah, - et al. “Codes over an Infinite Family of Algebras”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 2 (Special Issue: Noncommutative rings and their applications), 2017, pp. 131-40, doi:10.13069/jacodesmath.284947.
Vancouver Irwansyah -, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D. Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4(2 (Special Issue: Noncommutative rings and their applications):131-40.