Research Article
BibTex RIS Cite

Codes over an infinite family of algebras

Year 2017, Volume: 4 Issue: 2 (Special Issue: Noncommutative rings and their applications), 131 - 140, 10.01.2017
https://doi.org/10.13069/jacodesmath.284947

Abstract

In this paper, we will show some properties of codes over the ring $B_k=\mathbb{F}_p[v_1,\dots,v_k]/(v_i^2=v_i,\forall i=1,\dots,k).$ These rings, form a family of commutative algebras over finite field $\mathbb{F}_p$. We first discuss
about the form of maximal ideals and characterization of automorphisms for the ring $B_k$. Then, we define certain Gray map which can be used to
give a connection between codes over $B_k$ and codes over $\mathbb{F}_p$. Using the previous connection, we give a characterization for equivalence of
codes over $B_k$ and Euclidean self-dual codes. Furthermore, we give generators for invariant ring of Euclidean self-dual codes over $B_k$ through
MacWilliams relation of Hamming weight enumerator for such codes.

References

  • [1] T. Abualrub, N. Aydin, P. Seneviratne, On $\theta-$cyclic codes over F2 + vF2; Australas. J. Combin. 54 (2012) 115–126.
  • [2] Y. Cengellenmis, A. Dertli, S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr. 72(3) (2014) 559–580.
  • [3] J. Gao, Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform. 31(3–4) (2013) 337–342.
  • [4] A.R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z4–linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301–319.
  • [5] W. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
  • [6] Irwansyah, I. Muchtadi–Alamsyah, A. Muchlis, A. Barra, D. Suprijanto, Construction of $\theta$–cyclic codes over an algebra of order 4, Proceeding of the Third International Conference on Computation for Science and Technology (ICCST–3), Atlantis Press, 2015.
  • [7] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121(3) (1999) 555–575.
Year 2017, Volume: 4 Issue: 2 (Special Issue: Noncommutative rings and their applications), 131 - 140, 10.01.2017
https://doi.org/10.13069/jacodesmath.284947

Abstract

References

  • [1] T. Abualrub, N. Aydin, P. Seneviratne, On $\theta-$cyclic codes over F2 + vF2; Australas. J. Combin. 54 (2012) 115–126.
  • [2] Y. Cengellenmis, A. Dertli, S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Des. Codes Cryptogr. 72(3) (2014) 559–580.
  • [3] J. Gao, Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform. 31(3–4) (2013) 337–342.
  • [4] A.R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z4–linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301–319.
  • [5] W. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
  • [6] Irwansyah, I. Muchtadi–Alamsyah, A. Muchlis, A. Barra, D. Suprijanto, Construction of $\theta$–cyclic codes over an algebra of order 4, Proceeding of the Third International Conference on Computation for Science and Technology (ICCST–3), Atlantis Press, 2015.
  • [7] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121(3) (1999) 555–575.
There are 7 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

- Irwansyah

İntan Muchtadi-alamsyah This is me

Ahmad Muchlis This is me

Aleams Barra This is me

Djoko Suprijanto This is me

Publication Date January 10, 2017
Published in Issue Year 2017 Volume: 4 Issue: 2 (Special Issue: Noncommutative rings and their applications)

Cite

APA Irwansyah, .-., Muchtadi-alamsyah, İ., Muchlis, A., Barra, A., et al. (2017). Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications, 4(2 (Special Issue: Noncommutative rings and their applications), 131-140. https://doi.org/10.13069/jacodesmath.284947
AMA Irwansyah, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D. Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications. May 2017;4(2 (Special Issue: Noncommutative rings and their applications):131-140. doi:10.13069/jacodesmath.284947
Chicago Irwansyah, -, İntan Muchtadi-alamsyah, Ahmad Muchlis, Aleams Barra, and Djoko Suprijanto. “Codes over an Infinite Family of Algebras”. Journal of Algebra Combinatorics Discrete Structures and Applications 4, no. 2 (Special Issue: Noncommutative rings and their applications) (May 2017): 131-40. https://doi.org/10.13069/jacodesmath.284947.
EndNote Irwansyah -, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D (May 1, 2017) Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications 4 2 (Special Issue: Noncommutative rings and their applications) 131–140.
IEEE .-. Irwansyah, İ. Muchtadi-alamsyah, A. Muchlis, A. Barra, and D. Suprijanto, “Codes over an infinite family of algebras”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 2 (Special Issue: Noncommutative rings and their applications), pp. 131–140, 2017, doi: 10.13069/jacodesmath.284947.
ISNAD Irwansyah, - et al. “Codes over an Infinite Family of Algebras”. Journal of Algebra Combinatorics Discrete Structures and Applications 4/2 (Special Issue: Noncommutative rings and their applications) (May 2017), 131-140. https://doi.org/10.13069/jacodesmath.284947.
JAMA Irwansyah -, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D. Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4:131–140.
MLA Irwansyah, - et al. “Codes over an Infinite Family of Algebras”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 2 (Special Issue: Noncommutative rings and their applications), 2017, pp. 131-40, doi:10.13069/jacodesmath.284947.
Vancouver Irwansyah -, Muchtadi-alamsyah İ, Muchlis A, Barra A, Suprijanto D. Codes over an infinite family of algebras. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4(2 (Special Issue: Noncommutative rings and their applications):131-40.