Research Article
BibTex RIS Cite

Hermitian self-dual quasi-abelian codes

Year 2018, Volume: 5 Issue: 1, 5 - 18, 15.01.2018
https://doi.org/10.13069/jacodesmath.327399

Abstract

Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeration of Hermitian self-dual quasi-abelian codes are given. In the case of 1-generator quasi-abelian codes, we offer necessary and sufficient conditions for such codes to be Hermitian self-dual and give a formula for the number of these codes. In the case where the underlying groups are some $p$-groups, the actual number of resulting Hermitian self-dual quasi-abelian codes are determined.

References

  • [1] L. M. J. Bazzi, S. K. Mitter, Some randomized code constructions from group actions, IEEE Trans. Inform. Theory 52(7) (2006) 3210–3219.
  • [2] J. Conan, G. Séguin, Structural properties and enumeration of quasi–cylic codes, Appl. Algebra Engrg. Comm. Comput. 4(1) (1993) 25–39.
  • [3] B. K. Dey, On existence of good self–dual quasicyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1794–1798.
  • [4] B. K. Dey, B. S. Rajan, Codes closed under arbitrary abelian group of permutations, SIAM J. Discrete Math. 18(1) (2004) 1–18.
  • [5] C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485–495.
  • [6] S. Jitman, S. Ling, Quasi–abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511–531.
  • [7] S. Jitman, S. Ling, P. Solé, Hermitian self–dual abelian codes, IEEE Trans. Inform. Theory 60(3) (2014) 1496–1507.
  • [8] A. Ketkar, A. Klappenecker, S. Kumar, P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory 52(11) (2006) 4892–4914.
  • [9] K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1–2) (2001) 157–175.
  • [10] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751–2760.
  • [11] S. Ling, P. Solé, Good self–dual quasi–cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052–1053.
  • [12] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692–2700.
  • [13] G. Nebe, E. M. Rains, N. J. A. Sloane, Self–Dual Codes and Invariant Theory, Algorithms and Computation in Mathematics 17, Springer–Verlag, Berlin, Heidelberg, 2006.
  • [14] J. Pei, X. Zhang, 1-generator quasi–cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554–561.
  • [15] V. Pless, On the uniqueness of the Golay codes, J. Combinatorial Theory 5(3) (1968) 215–228.
  • [16] B. S. Rajan, M. U. Siddiqi, Transform domain characterization of abelian codes, IEEE Trans. Inform. Theory 38(6) (1992) 1817–1821.
  • [17] G. Séguin, A class of 1-generator quasi–cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745–1753.
  • [18] S. K. Wasan, Quasi abelian codes, Publ. Inst. Math. 21(35) (1977) 201–206.
Year 2018, Volume: 5 Issue: 1, 5 - 18, 15.01.2018
https://doi.org/10.13069/jacodesmath.327399

Abstract

References

  • [1] L. M. J. Bazzi, S. K. Mitter, Some randomized code constructions from group actions, IEEE Trans. Inform. Theory 52(7) (2006) 3210–3219.
  • [2] J. Conan, G. Séguin, Structural properties and enumeration of quasi–cylic codes, Appl. Algebra Engrg. Comm. Comput. 4(1) (1993) 25–39.
  • [3] B. K. Dey, On existence of good self–dual quasicyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1794–1798.
  • [4] B. K. Dey, B. S. Rajan, Codes closed under arbitrary abelian group of permutations, SIAM J. Discrete Math. 18(1) (2004) 1–18.
  • [5] C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485–495.
  • [6] S. Jitman, S. Ling, Quasi–abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511–531.
  • [7] S. Jitman, S. Ling, P. Solé, Hermitian self–dual abelian codes, IEEE Trans. Inform. Theory 60(3) (2014) 1496–1507.
  • [8] A. Ketkar, A. Klappenecker, S. Kumar, P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory 52(11) (2006) 4892–4914.
  • [9] K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1–2) (2001) 157–175.
  • [10] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751–2760.
  • [11] S. Ling, P. Solé, Good self–dual quasi–cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052–1053.
  • [12] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692–2700.
  • [13] G. Nebe, E. M. Rains, N. J. A. Sloane, Self–Dual Codes and Invariant Theory, Algorithms and Computation in Mathematics 17, Springer–Verlag, Berlin, Heidelberg, 2006.
  • [14] J. Pei, X. Zhang, 1-generator quasi–cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554–561.
  • [15] V. Pless, On the uniqueness of the Golay codes, J. Combinatorial Theory 5(3) (1968) 215–228.
  • [16] B. S. Rajan, M. U. Siddiqi, Transform domain characterization of abelian codes, IEEE Trans. Inform. Theory 38(6) (1992) 1817–1821.
  • [17] G. Séguin, A class of 1-generator quasi–cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745–1753.
  • [18] S. K. Wasan, Quasi abelian codes, Publ. Inst. Math. 21(35) (1977) 201–206.
There are 18 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Herbert S. Palines This is me

Somphong Jitman 0000-0003-1076-0866

Romar B. Dela Cruz This is me

Publication Date January 15, 2018
Published in Issue Year 2018 Volume: 5 Issue: 1

Cite

APA Palines, H. . S., Jitman, S., & Cruz, R. B. D. (2018). Hermitian self-dual quasi-abelian codes. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(1), 5-18. https://doi.org/10.13069/jacodesmath.327399
AMA Palines HS, Jitman S, Cruz RBD. Hermitian self-dual quasi-abelian codes. Journal of Algebra Combinatorics Discrete Structures and Applications. January 2018;5(1):5-18. doi:10.13069/jacodesmath.327399
Chicago Palines, Herbert S., Somphong Jitman, and Romar B. Dela Cruz. “Hermitian Self-Dual Quasi-Abelian Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, no. 1 (January 2018): 5-18. https://doi.org/10.13069/jacodesmath.327399.
EndNote Palines HS, Jitman S, Cruz RBD (January 1, 2018) Hermitian self-dual quasi-abelian codes. Journal of Algebra Combinatorics Discrete Structures and Applications 5 1 5–18.
IEEE H. . S. Palines, S. Jitman, and R. B. D. Cruz, “Hermitian self-dual quasi-abelian codes”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 1, pp. 5–18, 2018, doi: 10.13069/jacodesmath.327399.
ISNAD Palines, Herbert S. et al. “Hermitian Self-Dual Quasi-Abelian Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/1 (January 2018), 5-18. https://doi.org/10.13069/jacodesmath.327399.
JAMA Palines HS, Jitman S, Cruz RBD. Hermitian self-dual quasi-abelian codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:5–18.
MLA Palines, Herbert S. et al. “Hermitian Self-Dual Quasi-Abelian Codes”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 5, no. 1, 2018, pp. 5-18, doi:10.13069/jacodesmath.327399.
Vancouver Palines HS, Jitman S, Cruz RBD. Hermitian self-dual quasi-abelian codes. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(1):5-18.

Cited By