Year 2018, Volume 5 , Issue 2, Pages 51 - 63 2018-05-29

Fourier matrices of small rank

Gurmail Singh [1]


Modular data is an important topic of study in rational conformal field theory. Cuntz, using a computer, classified the Fourier matrices associated to modular data with rational entries up to rank $12$, see [3]. Here we use the properties of $C$-algebras arising from Fourier matrices to classify complex Fourier matrices under certain conditions up to rank $5$. Also, we establish some results that are helpful in recognizing $C$-algebras that not arising from Fourier matrices by just looking at the first row of their character tables.
Fourier matrices, Modular data, Fusion rings, C-algebras
  • [1] Z. Arad, E. Fisman, M. Muzychuk, Generalized table algebras, Israel J. Math. 114(1) (1999) 29–60.
  • [2] H. I. Blau, Table algebras, European J. Combin. 30(6) (2009) 1426–1455.
  • [3] M. Cuntz, Integral modular data and congruences, J. Algebraic Combin. 29(3) (2009) 357–387.
  • [4] P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer–Verlag, New York, 1997.
  • [5] T. Gannon, Modular data: The algebraic combinatorics of conformal field theory, J. Algebraic Combin. 22(2) (2005) 211–250.
  • [6] A. Hanaki, I. Miyamoto, Classification of association schemes with small vertices, 2017, available at: math.shinshu-u.ac.jp/ hanaki/as/.
  • [7] D. G. Higman, Coherent algebras, Linear Algebra Appl. 93 (1987) 209–239.
  • [8] J. D. Qualls, Lectures on Conformal Field Theory, arXiv:1511.04074 [hep-th].
  • [9] E. L. Rees, Graphical Discussion of the Roots of a Quartic Equation, Amer. Math. Monthly 29(2) (1922) 51–55.
  • [10] M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, Springer–Verlag, Berlin, Heidelberg, 2nd edition, 2008.
  • [11] G. Singh, Classification of homogeneous Fourier matrices, arXiv:1610.05353 [math.RA].
  • [12] B. Xu, Characters of table algebras and applications to association schemes, J. Combin. Theory Ser. A 115(8) (2008) 1358–1373.
  • [13] A. Zahabi, Applications of Conformal Field Theory and String Theory in Statistical Systems, Ph.D. dissertation, University of Helsinki, Helsinki, Finland, 2013.
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-0819-8221
Author: Gurmail Singh

Dates

Publication Date : May 29, 2018

Bibtex @research article { jacodesmath369865, journal = {Journal of Algebra Combinatorics Discrete Structures and Applications}, issn = {}, eissn = {2148-838X}, address = {}, publisher = {Yildiz Technical University}, year = {2018}, volume = {5}, pages = {51 - 63}, doi = {10.13069/jacodesmath.369865}, title = {Fourier matrices of small rank}, key = {cite}, author = {Singh, Gurmail} }
APA Singh, G . (2018). Fourier matrices of small rank . Journal of Algebra Combinatorics Discrete Structures and Applications , 5 (2) , 51-63 . DOI: 10.13069/jacodesmath.369865
MLA Singh, G . "Fourier matrices of small rank" . Journal of Algebra Combinatorics Discrete Structures and Applications 5 (2018 ): 51-63 <https://dergipark.org.tr/en/pub/jacodesmath/issue/37143/369865>
Chicago Singh, G . "Fourier matrices of small rank". Journal of Algebra Combinatorics Discrete Structures and Applications 5 (2018 ): 51-63
RIS TY - JOUR T1 - Fourier matrices of small rank AU - Gurmail Singh Y1 - 2018 PY - 2018 N1 - doi: 10.13069/jacodesmath.369865 DO - 10.13069/jacodesmath.369865 T2 - Journal of Algebra Combinatorics Discrete Structures and Applications JF - Journal JO - JOR SP - 51 EP - 63 VL - 5 IS - 2 SN - -2148-838X M3 - doi: 10.13069/jacodesmath.369865 UR - https://doi.org/10.13069/jacodesmath.369865 Y2 - 2017 ER -
EndNote %0 Journal of Algebra Combinatorics Discrete Structures and Applications Fourier matrices of small rank %A Gurmail Singh %T Fourier matrices of small rank %D 2018 %J Journal of Algebra Combinatorics Discrete Structures and Applications %P -2148-838X %V 5 %N 2 %R doi: 10.13069/jacodesmath.369865 %U 10.13069/jacodesmath.369865
ISNAD Singh, Gurmail . "Fourier matrices of small rank". Journal of Algebra Combinatorics Discrete Structures and Applications 5 / 2 (May 2018): 51-63 . https://doi.org/10.13069/jacodesmath.369865
AMA Singh G . Fourier matrices of small rank. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018; 5(2): 51-63.
Vancouver Singh G . Fourier matrices of small rank. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018; 5(2): 51-63.