Year 2018, Volume 5 , Issue 2, Pages 65 - 70 2018-03-13

Some new binary codes with improved minimum distances

Eric Zhi CHEN [1]


It has been well-known that the class of quasi-cyclic (QC) codes contain many good codes. In this paper, a method to conduct a computer search for binary $2$-generator QC codes is presented, and a large number of good $2$-generator QC codes have been obtained. $5$ new binary QC codes that improve the lower bounds on minimum distance are presented. Furthermore, with new $2$-generator QC codes and Construction X, $2$ new improved binary linear codes are obtained. With the standard construction techniques, another $16$ new binary linear codes that improve the lower bound on the minimum distance have also been obtained.
Binary linear codes, Quasi-cyclic codes, Algorithms
  • [1] N. Aydin, I. Siap, D. K. Ray–Chaudhuri, The structure of 1–generator quasi–twisted codes and new linear codes, Des. Codes Cryptogr. 24(3) (2001) 313–326.
  • [2] N. Aydin, I. Siap, New quasi–cyclic codes over $F_5$, Appl. Math. Lett. 15(7) (2002) 833–836.
  • [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3–4) (1997) 235–265.
  • [4] C. L. Chen, W. W. Peterson, E. J. Weldon Jr., Some results on quasi–cyclic codes, Inform. and Control 15(5) (1969) 407–423.
  • [5] E. Z. Chen, Six new binary quasi–cyclic codes, IEEE Trans. Inform. Theory 40(5) (1994) 1666–1667.
  • [6] E. Z. Chen, New quasi–cyclic codes from simplex codes, IEEE Trans. Inform. Theory 53(3) (2007) 1193–1196.
  • [7] E. Z. Chen, A new iterative computer search algorithm for good quasi–twisted codes, Des. Codes Cryptogr. 76(2) (2015) 307–323.
  • [8] E. Z. Chen, N. Aydin, A database of linear codes over $F_{13}$ with minimum distance bounds and new quasi–twisted codes from a heuristic search algorithm, J. Algebra Comb. Discrete Appl. 2(1) (2015) 1–16.
  • [9] E. Z. Chen, Database of quasi–twisted codes, 2017, available at http://www.tec.hkr.se/~chen/ research/ codes
  • [10] E. Z. Chen, New binary h–generator quasi–cyclic codes by augmentation and new minimum distance bounds, Des. Codes Cryptogr. 80(1) (2016) 1–10.
  • [11] R. N. Daskalov, T. A. Gulliver, New good quasi–cyclic ternary and quaternary linear codes, IEEETrans. Inform. Theory 43(5) (1997) 1647–1650.
  • [12] R. Daskalov, P. Hristov, Some new quasi–twisted ternary linear codes, J. Algebra Comb. Discrete Appl. 2(3) (2015) 211–216.
  • [13] M. Grassl, Bounds on the minimum distances of linear codes, available at http://www.codetables.de, accessed on November 2, 2016. [14] T. A. Gulliver, V. K. Bhargava, Some best rate 1/p and rate (p-1)/p systematic quasi–cyclic codes, IEEE Trans. Inform. Theory 37(3) (1991) 552–555.
  • [15] T. A. Gulliver, V. K. Bhargava, Nine good rate (m-1)/pm quasi–cyclic codes, IEEE Trans. Inform. Theory 38(4) (1992) 1366–1369.
  • [16] T. A. Gulliver, V. K. Bhargava, Twelve good rate (m-r)/pm quasi–cyclic codes, IEEE Trans. Inform. Theory 39(5) (1993) 1750–1751.
  • [17] T. A. Gulliver, V. K. Bhargava, Two new rate 2/p binary quasi–cyclic codes, IEEE Trans. Inform. Theory 40(5) (1994) 1667–1668.
  • [18] I. Siap, N. Aydin, D. K. Ray–Chaudhuri, New ternary quasi–cyclic codes with better minimum distances, IEEE Trans. Inform. Theory 46(4) (2000) 1554–1558.
  • [19] H. van Tilborg, On quasi–cyclic codes with rate 1/m, IEEE Trans. Inform. Theory 24(5) (1978) 628–630.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-2492-7754
Author: Eric Zhi CHEN

Dates

Publication Date : March 13, 2018

Bibtex @research article { jacodesmath404964, journal = {Journal of Algebra Combinatorics Discrete Structures and Applications}, issn = {}, eissn = {2148-838X}, address = {}, publisher = {Yildiz Technical University}, year = {2018}, volume = {5}, pages = {65 - 70}, doi = {10.13069/jacodesmath.404964}, title = {Some new binary codes with improved minimum distances}, key = {cite}, author = {Chen, Eric Zhi} }
APA Chen, E . (2018). Some new binary codes with improved minimum distances . Journal of Algebra Combinatorics Discrete Structures and Applications , 5 (2) , 65-70 . DOI: 10.13069/jacodesmath.404964
MLA Chen, E . "Some new binary codes with improved minimum distances" . Journal of Algebra Combinatorics Discrete Structures and Applications 5 (2018 ): 65-70 <https://dergipark.org.tr/en/pub/jacodesmath/issue/37143/404964>
Chicago Chen, E . "Some new binary codes with improved minimum distances". Journal of Algebra Combinatorics Discrete Structures and Applications 5 (2018 ): 65-70
RIS TY - JOUR T1 - Some new binary codes with improved minimum distances AU - Eric Zhi Chen Y1 - 2018 PY - 2018 N1 - doi: 10.13069/jacodesmath.404964 DO - 10.13069/jacodesmath.404964 T2 - Journal of Algebra Combinatorics Discrete Structures and Applications JF - Journal JO - JOR SP - 65 EP - 70 VL - 5 IS - 2 SN - -2148-838X M3 - doi: 10.13069/jacodesmath.404964 UR - https://doi.org/10.13069/jacodesmath.404964 Y2 - 2017 ER -
EndNote %0 Journal of Algebra Combinatorics Discrete Structures and Applications Some new binary codes with improved minimum distances %A Eric Zhi Chen %T Some new binary codes with improved minimum distances %D 2018 %J Journal of Algebra Combinatorics Discrete Structures and Applications %P -2148-838X %V 5 %N 2 %R doi: 10.13069/jacodesmath.404964 %U 10.13069/jacodesmath.404964
ISNAD Chen, Eric Zhi . "Some new binary codes with improved minimum distances". Journal of Algebra Combinatorics Discrete Structures and Applications 5 / 2 (March 2018): 65-70 . https://doi.org/10.13069/jacodesmath.404964
AMA Chen E . Some new binary codes with improved minimum distances. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018; 5(2): 65-70.
Vancouver Chen E . Some new binary codes with improved minimum distances. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018; 5(2): 65-70.