Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 5 Sayı: 2, 65 - 70, 13.03.2018
https://doi.org/10.13069/jacodesmath.404964

Öz

Kaynakça

  • [1] N. Aydin, I. Siap, D. K. Ray–Chaudhuri, The structure of 1–generator quasi–twisted codes and new linear codes, Des. Codes Cryptogr. 24(3) (2001) 313–326.
  • [2] N. Aydin, I. Siap, New quasi–cyclic codes over $F_5$, Appl. Math. Lett. 15(7) (2002) 833–836.
  • [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3–4) (1997) 235–265.
  • [4] C. L. Chen, W. W. Peterson, E. J. Weldon Jr., Some results on quasi–cyclic codes, Inform. and Control 15(5) (1969) 407–423.
  • [5] E. Z. Chen, Six new binary quasi–cyclic codes, IEEE Trans. Inform. Theory 40(5) (1994) 1666–1667.
  • [6] E. Z. Chen, New quasi–cyclic codes from simplex codes, IEEE Trans. Inform. Theory 53(3) (2007) 1193–1196.
  • [7] E. Z. Chen, A new iterative computer search algorithm for good quasi–twisted codes, Des. Codes Cryptogr. 76(2) (2015) 307–323.
  • [8] E. Z. Chen, N. Aydin, A database of linear codes over $F_{13}$ with minimum distance bounds and new quasi–twisted codes from a heuristic search algorithm, J. Algebra Comb. Discrete Appl. 2(1) (2015) 1–16.
  • [9] E. Z. Chen, Database of quasi–twisted codes, 2017, available at http://www.tec.hkr.se/~chen/ research/ codes
  • [10] E. Z. Chen, New binary h–generator quasi–cyclic codes by augmentation and new minimum distance bounds, Des. Codes Cryptogr. 80(1) (2016) 1–10.
  • [11] R. N. Daskalov, T. A. Gulliver, New good quasi–cyclic ternary and quaternary linear codes, IEEETrans. Inform. Theory 43(5) (1997) 1647–1650.
  • [12] R. Daskalov, P. Hristov, Some new quasi–twisted ternary linear codes, J. Algebra Comb. Discrete Appl. 2(3) (2015) 211–216.
  • [13] M. Grassl, Bounds on the minimum distances of linear codes, available at http://www.codetables.de, accessed on November 2, 2016. [14] T. A. Gulliver, V. K. Bhargava, Some best rate 1/p and rate (p-1)/p systematic quasi–cyclic codes, IEEE Trans. Inform. Theory 37(3) (1991) 552–555.
  • [15] T. A. Gulliver, V. K. Bhargava, Nine good rate (m-1)/pm quasi–cyclic codes, IEEE Trans. Inform. Theory 38(4) (1992) 1366–1369.
  • [16] T. A. Gulliver, V. K. Bhargava, Twelve good rate (m-r)/pm quasi–cyclic codes, IEEE Trans. Inform. Theory 39(5) (1993) 1750–1751.
  • [17] T. A. Gulliver, V. K. Bhargava, Two new rate 2/p binary quasi–cyclic codes, IEEE Trans. Inform. Theory 40(5) (1994) 1667–1668.
  • [18] I. Siap, N. Aydin, D. K. Ray–Chaudhuri, New ternary quasi–cyclic codes with better minimum distances, IEEE Trans. Inform. Theory 46(4) (2000) 1554–1558.
  • [19] H. van Tilborg, On quasi–cyclic codes with rate 1/m, IEEE Trans. Inform. Theory 24(5) (1978) 628–630.

Some new binary codes with improved minimum distances

Yıl 2018, Cilt: 5 Sayı: 2, 65 - 70, 13.03.2018
https://doi.org/10.13069/jacodesmath.404964

Öz

It has been well-known that the class of quasi-cyclic (QC) codes contain many good codes. In this paper, a method to conduct a computer search for binary $2$-generator QC codes is presented, and a large number of good $2$-generator QC codes have been obtained. $5$ new binary QC codes that improve the lower bounds on minimum distance are presented. Furthermore, with new $2$-generator QC codes and Construction X, $2$ new improved binary linear codes are obtained. With the standard construction techniques, another $16$ new binary linear codes that improve the lower bound on the minimum distance have also been obtained.

Kaynakça

  • [1] N. Aydin, I. Siap, D. K. Ray–Chaudhuri, The structure of 1–generator quasi–twisted codes and new linear codes, Des. Codes Cryptogr. 24(3) (2001) 313–326.
  • [2] N. Aydin, I. Siap, New quasi–cyclic codes over $F_5$, Appl. Math. Lett. 15(7) (2002) 833–836.
  • [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3–4) (1997) 235–265.
  • [4] C. L. Chen, W. W. Peterson, E. J. Weldon Jr., Some results on quasi–cyclic codes, Inform. and Control 15(5) (1969) 407–423.
  • [5] E. Z. Chen, Six new binary quasi–cyclic codes, IEEE Trans. Inform. Theory 40(5) (1994) 1666–1667.
  • [6] E. Z. Chen, New quasi–cyclic codes from simplex codes, IEEE Trans. Inform. Theory 53(3) (2007) 1193–1196.
  • [7] E. Z. Chen, A new iterative computer search algorithm for good quasi–twisted codes, Des. Codes Cryptogr. 76(2) (2015) 307–323.
  • [8] E. Z. Chen, N. Aydin, A database of linear codes over $F_{13}$ with minimum distance bounds and new quasi–twisted codes from a heuristic search algorithm, J. Algebra Comb. Discrete Appl. 2(1) (2015) 1–16.
  • [9] E. Z. Chen, Database of quasi–twisted codes, 2017, available at http://www.tec.hkr.se/~chen/ research/ codes
  • [10] E. Z. Chen, New binary h–generator quasi–cyclic codes by augmentation and new minimum distance bounds, Des. Codes Cryptogr. 80(1) (2016) 1–10.
  • [11] R. N. Daskalov, T. A. Gulliver, New good quasi–cyclic ternary and quaternary linear codes, IEEETrans. Inform. Theory 43(5) (1997) 1647–1650.
  • [12] R. Daskalov, P. Hristov, Some new quasi–twisted ternary linear codes, J. Algebra Comb. Discrete Appl. 2(3) (2015) 211–216.
  • [13] M. Grassl, Bounds on the minimum distances of linear codes, available at http://www.codetables.de, accessed on November 2, 2016. [14] T. A. Gulliver, V. K. Bhargava, Some best rate 1/p and rate (p-1)/p systematic quasi–cyclic codes, IEEE Trans. Inform. Theory 37(3) (1991) 552–555.
  • [15] T. A. Gulliver, V. K. Bhargava, Nine good rate (m-1)/pm quasi–cyclic codes, IEEE Trans. Inform. Theory 38(4) (1992) 1366–1369.
  • [16] T. A. Gulliver, V. K. Bhargava, Twelve good rate (m-r)/pm quasi–cyclic codes, IEEE Trans. Inform. Theory 39(5) (1993) 1750–1751.
  • [17] T. A. Gulliver, V. K. Bhargava, Two new rate 2/p binary quasi–cyclic codes, IEEE Trans. Inform. Theory 40(5) (1994) 1667–1668.
  • [18] I. Siap, N. Aydin, D. K. Ray–Chaudhuri, New ternary quasi–cyclic codes with better minimum distances, IEEE Trans. Inform. Theory 46(4) (2000) 1554–1558.
  • [19] H. van Tilborg, On quasi–cyclic codes with rate 1/m, IEEE Trans. Inform. Theory 24(5) (1978) 628–630.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Eric Zhi Chen Bu kişi benim 0000-0002-2492-7754

Yayımlanma Tarihi 13 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 2

Kaynak Göster

APA Chen, E. Z. (2018). Some new binary codes with improved minimum distances. Journal of Algebra Combinatorics Discrete Structures and Applications, 5(2), 65-70. https://doi.org/10.13069/jacodesmath.404964
AMA Chen EZ. Some new binary codes with improved minimum distances. Journal of Algebra Combinatorics Discrete Structures and Applications. Mayıs 2018;5(2):65-70. doi:10.13069/jacodesmath.404964
Chicago Chen, Eric Zhi. “Some New Binary Codes With Improved Minimum Distances”. Journal of Algebra Combinatorics Discrete Structures and Applications 5, sy. 2 (Mayıs 2018): 65-70. https://doi.org/10.13069/jacodesmath.404964.
EndNote Chen EZ (01 Mayıs 2018) Some new binary codes with improved minimum distances. Journal of Algebra Combinatorics Discrete Structures and Applications 5 2 65–70.
IEEE E. Z. Chen, “Some new binary codes with improved minimum distances”, Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 2, ss. 65–70, 2018, doi: 10.13069/jacodesmath.404964.
ISNAD Chen, Eric Zhi. “Some New Binary Codes With Improved Minimum Distances”. Journal of Algebra Combinatorics Discrete Structures and Applications 5/2 (Mayıs 2018), 65-70. https://doi.org/10.13069/jacodesmath.404964.
JAMA Chen EZ. Some new binary codes with improved minimum distances. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5:65–70.
MLA Chen, Eric Zhi. “Some New Binary Codes With Improved Minimum Distances”. Journal of Algebra Combinatorics Discrete Structures and Applications, c. 5, sy. 2, 2018, ss. 65-70, doi:10.13069/jacodesmath.404964.
Vancouver Chen EZ. Some new binary codes with improved minimum distances. Journal of Algebra Combinatorics Discrete Structures and Applications. 2018;5(2):65-70.