Year 2020, Volume 7 , Issue 2, Pages 141 - 160 2020-05-07

Trace forms of certain subfields of cyclotomic fields and applications

Agnaldo JOSÉ FERRARI [1] , Antonio APARECIDO DE ANDRADE [2] , Robson RICARDO DE ARAUJO [3] , José CARMELO INTERLANDO [4]


In this work, we present a explicit trace forms for maximal real subfields of cyclotomic fields as tools for constructing algebraic lattices in Euclidean space with optimal center density. We also obtain a closed formula for the Gram matrix of algebraic lattices obtained from these subfields. The obtained lattices are rotated versions of the lattices $ \Lambda_9, \Lambda_{10}$ and $\Lambda_{11}$ and they are images of $\mathbb{Z}$-submodules of rings of integers under the twisted homomorphism, and these constructions, as algebraic lattices, are new in the literature. We also obtain algebraic lattices in odd dimensions up to $7$ over real subfields, calculate their minimum product distance and compare with those known in literatura, since lattices constructed over real subfields have full diversity.
Cyclotomic fields, Algebraic lattices, Twisted homomorphism, Signal design
  • [1] A. A. Andrade, A. J. Ferrari, C. W. O. Benedito, Constructions of algebraic lattices, Comput. Appl. Math. 29(3) (2010) 1–13.
  • [2] E. Bayer–Fluckiger, Ideal lattices, Proceedings of the conference Number Theory and Diophantine Geometry (2002) 168–184.
  • [3] E. Bayer–Fluckiger, Lattices and number fields, Contemp. Math. 241 (1999) 69–84.
  • [4] E. Bayer–Fluckiger, Upper bounds for Euclidean minima of algebraic number fields, J. Number Theory 121(2) (2006) 305–323.
  • [5] E. Bayer–Fluckiger, F. Oggier, E. Viterbo, New algebraic constructions of rotated $\mathbb{Z}^n$–lattice constellations for the Rayleigh fading channel, IEEE Trans. Inform. Theory 50(4) (2004) 702–714.
  • [6] E. Bayer–Fluckiger, G. Nebe, On the Euclidian minimum of some real number fields, Journal de Théorie des Nombres de Bordeaux 17(2) (2005) 437–454.
  • [7] E. Bayer–Fluckiger, I. Suarez, Ideal lattices over totally real number fields and Euclidean minima, Arch. Math. 86 (2006) 217–225.
  • [8] E. Bayer–Fluckiger, P. Maciak, Upper bounds for Euclidean minimal for abelian number fields of odd prime conductor, Math. Ann. 357 (2013) 1071–1089.
  • [9] W. Bosma, J. Cannon, C. Playoust, The magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997) 235–265.
  • [10] J. Boutros, E. Viterbo, C. Rastello, J. C. Belfiori, Good lattice constellations for both Rayleigh fading and Gaussian channels, IEEE Trans. Inform. Theory 42(2) (1996) 502–518.
  • [11] H. Cohn, A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Ann. of Math. 170(3) (2009) 1003–1050.
  • [12] J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer–Verlag, New York 1998.
  • [13] A. J. Ferrari, A. A. Andrade, Constructions of rotated lattice constellations in dimensions power of 3, J. Algebra Appl. 17(09) (2017) 1850175.
  • [14] J. C. Interlando, T. P. N. Neto, T. M. Rodrigues, J. O. D. Lopes, A note on the integral trace form in cyclotomic fields, J. Algebra Appl. 14(04) (2015) 1550045.
  • [15] G. C. Jorge, A. A. Andrade, S. I. R. Costa, J. E. Strapasson, Algebraic constructions of densest lattices, J. Algebra 429 (2015) 218–235.
  • [16] G. C. Jorge, A. J. Ferrari, S. I. R. Costa, Rotated $D_n$–lattices, J. Number Theory 132(11) (2012) 2397–2406.
  • [17] D. Micciancio, S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Perspective, in Kluwer Internat. Ser. Engrg. Comput. Sci., Kluwer Academic Publishers 671 2002.
  • [18] F. Oggier, E. Bayer–Fluckiger, Best rotated cubic lattice constellations for the Rayleigh fading channel, in Proceedings of IEEE International Symposium on Information Theory (2003).
  • [19] E. L. Oliveira, J. C. Interlando, T. P. N. Neto, J. O. D. Lopes, The integral trace form of cyclic extensions of odd prime degree, Rocky Mountain J. Math. 47(4) (2017) 1075–1088.
  • [20] P. Samuel, Algebraic Theory of Numbers, Hermann, 1982.
  • [21] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1995.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-1422-1416
Author: Agnaldo JOSÉ FERRARI
Institution: Sao Paulo State University (Unesp)
Country: Brazil


Orcid: 0000-0001-6452-2236
Author: Antonio APARECIDO DE ANDRADE
Institution: Sao Paulo State University
Country: Brazil


Orcid: 0000-0002-1357-9926
Author: Robson RICARDO DE ARAUJO
Institution: Sao Paulo State University
Country: Brazil


Orcid: 0000-0003-4928-043X
Author: José CARMELO INTERLANDO
Institution: San Diego University
Country: United States


Thanks This work was supported by Fapesp 2013/25977-7 and CNPq 429346/2018-2.
Dates

Publication Date : May 7, 2020

Bibtex @research article { jacodesmath729440, journal = {Journal of Algebra Combinatorics Discrete Structures and Applications}, issn = {}, eissn = {2148-838X}, address = {}, publisher = {Yildiz Technical University}, year = {2020}, volume = {7}, pages = {141 - 160}, doi = {10.13069/jacodesmath.729440}, title = {Trace forms of certain subfields of cyclotomic fields and applications}, key = {cite}, author = {José Ferrarı, Agnaldo and Aparecıdo De Andrade, Antonio and Rıcardo De Araujo, Robson and Carmelo Interlando, José} }
APA José Ferrarı, A , Aparecıdo De Andrade, A , Rıcardo De Araujo, R , Carmelo Interlando, J . (2020). Trace forms of certain subfields of cyclotomic fields and applications . Journal of Algebra Combinatorics Discrete Structures and Applications , 7 (2) , 141-160 . DOI: 10.13069/jacodesmath.729440
MLA José Ferrarı, A , Aparecıdo De Andrade, A , Rıcardo De Araujo, R , Carmelo Interlando, J . "Trace forms of certain subfields of cyclotomic fields and applications" . Journal of Algebra Combinatorics Discrete Structures and Applications 7 (2020 ): 141-160 <https://dergipark.org.tr/en/pub/jacodesmath/issue/54201/729440>
Chicago José Ferrarı, A , Aparecıdo De Andrade, A , Rıcardo De Araujo, R , Carmelo Interlando, J . "Trace forms of certain subfields of cyclotomic fields and applications". Journal of Algebra Combinatorics Discrete Structures and Applications 7 (2020 ): 141-160
RIS TY - JOUR T1 - Trace forms of certain subfields of cyclotomic fields and applications AU - Agnaldo José Ferrarı , Antonio Aparecıdo De Andrade , Robson Rıcardo De Araujo , José Carmelo Interlando Y1 - 2020 PY - 2020 N1 - doi: 10.13069/jacodesmath.729440 DO - 10.13069/jacodesmath.729440 T2 - Journal of Algebra Combinatorics Discrete Structures and Applications JF - Journal JO - JOR SP - 141 EP - 160 VL - 7 IS - 2 SN - -2148-838X M3 - doi: 10.13069/jacodesmath.729440 UR - https://doi.org/10.13069/jacodesmath.729440 Y2 - 2019 ER -
EndNote %0 Journal of Algebra Combinatorics Discrete Structures and Applications Trace forms of certain subfields of cyclotomic fields and applications %A Agnaldo José Ferrarı , Antonio Aparecıdo De Andrade , Robson Rıcardo De Araujo , José Carmelo Interlando %T Trace forms of certain subfields of cyclotomic fields and applications %D 2020 %J Journal of Algebra Combinatorics Discrete Structures and Applications %P -2148-838X %V 7 %N 2 %R doi: 10.13069/jacodesmath.729440 %U 10.13069/jacodesmath.729440
ISNAD José Ferrarı, Agnaldo , Aparecıdo De Andrade, Antonio , Rıcardo De Araujo, Robson , Carmelo Interlando, José . "Trace forms of certain subfields of cyclotomic fields and applications". Journal of Algebra Combinatorics Discrete Structures and Applications 7 / 2 (May 2020): 141-160 . https://doi.org/10.13069/jacodesmath.729440
AMA José Ferrarı A , Aparecıdo De Andrade A , Rıcardo De Araujo R , Carmelo Interlando J . Trace forms of certain subfields of cyclotomic fields and applications. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020; 7(2): 141-160.
Vancouver José Ferrarı A , Aparecıdo De Andrade A , Rıcardo De Araujo R , Carmelo Interlando J . Trace forms of certain subfields of cyclotomic fields and applications. Journal of Algebra Combinatorics Discrete Structures and Applications. 2020; 7(2): 141-160.

Authors of the Article
Agnaldo JOSÉ FERRARI [1]
Antonio APARECIDO DE ANDRADE [2]
Robson RICARDO DE ARAUJO [3]
José CARMELO INTERLANDO [4]