Research Article
BibTex RIS Cite

On unit group of finite semisimple group algebras of non-metabelian groups of order 108

Year 2021, Volume: 8 Issue: 2, 59 - 71, 20.05.2021
https://doi.org/10.13069/jacodesmath.935938

Abstract

In this paper, we characterize the unit groups of semisimple group algebras $\mathbb{F}_qG$ of non-metabelian groups of order $108$, where $F_q$ is a field with $q=p^k$ elements for some prime $p > 3$ and positive integer $k$. Up to isomorphism, there are $45$ groups of order $108$ but only $4$ of them are non-metabelian. We consider all the non-metabelian groups of order $108$ and find the Wedderburn decomposition of their semisimple group algebras. And as a by-product obtain the unit groups.

References

  • [1] A. Bovdi, J. Kurdics, Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra 212 (1999) 28–64.
  • [2] V. Bovdi, M. Salim, On the unit group of a commutative group ring, Acta Sci. Math. (Szeged) 80 (2014) 433–445.
  • [3] R. A. Ferraz, Simple components of the center of FG/J(FG), Comm. Algebra 36 (2008) 3191–3199.
  • [4] B. Hurley, T. Hurley, Group ring cryptography, Int. J. Pure Appl. Math. 69 (2011) 67–86.
  • [5] P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, Int. J. Inf. Coding Theory 1 (2009) 57–87.
  • [6] G. Karpilovsky, The Jacobson radical of group algebras, Volume 135 Elsevier (1987).
  • [7] M. Khan, R. K. Sharma, J. Srivastava, The unit group of FS4, Acta Math. Hungar. 118 (2008) 105-113.
  • [8] R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge university press (1994).
  • [9] S. Maheshwari, R. K. Sharma, The unit group of group algebra FqSL(2;Z3), J. Algebra Comb. Discrete Appl. 3 (2016) 1–6.
  • [10] N. Makhijani, R. K. Sharma, J. Srivastava, A note on the structure of FpkA5=J(FpkA5), Acta Sci. Math. (Szeged) 82 (2016) 29–43.
  • [11] C. P. Milies, S. K. Sehgal, An introduction to group rings, Springer Science & Business Media (2002).
  • [12] G. Mittal, R. K. Sharma, On unit group of finite group algebras of non-metabelian groups up to order 72, Math Bohemica (2021)
  • [13] G. Pazderski, The orders to which only belong metabelian groups, Math. Nachr. 95 (1980) 7–16.
  • [14] S. Perlis, G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68 (1950) 420–426.
  • [15] R. K. Sharma, G. Mittal, On the unit group of a semisimple group algebra FqSL(2;Z5), Math Bohemica (2021).
Year 2021, Volume: 8 Issue: 2, 59 - 71, 20.05.2021
https://doi.org/10.13069/jacodesmath.935938

Abstract

References

  • [1] A. Bovdi, J. Kurdics, Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra 212 (1999) 28–64.
  • [2] V. Bovdi, M. Salim, On the unit group of a commutative group ring, Acta Sci. Math. (Szeged) 80 (2014) 433–445.
  • [3] R. A. Ferraz, Simple components of the center of FG/J(FG), Comm. Algebra 36 (2008) 3191–3199.
  • [4] B. Hurley, T. Hurley, Group ring cryptography, Int. J. Pure Appl. Math. 69 (2011) 67–86.
  • [5] P. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, Int. J. Inf. Coding Theory 1 (2009) 57–87.
  • [6] G. Karpilovsky, The Jacobson radical of group algebras, Volume 135 Elsevier (1987).
  • [7] M. Khan, R. K. Sharma, J. Srivastava, The unit group of FS4, Acta Math. Hungar. 118 (2008) 105-113.
  • [8] R. Lidl, H. Niederreiter, Introduction to finite fields and their applications, Cambridge university press (1994).
  • [9] S. Maheshwari, R. K. Sharma, The unit group of group algebra FqSL(2;Z3), J. Algebra Comb. Discrete Appl. 3 (2016) 1–6.
  • [10] N. Makhijani, R. K. Sharma, J. Srivastava, A note on the structure of FpkA5=J(FpkA5), Acta Sci. Math. (Szeged) 82 (2016) 29–43.
  • [11] C. P. Milies, S. K. Sehgal, An introduction to group rings, Springer Science & Business Media (2002).
  • [12] G. Mittal, R. K. Sharma, On unit group of finite group algebras of non-metabelian groups up to order 72, Math Bohemica (2021)
  • [13] G. Pazderski, The orders to which only belong metabelian groups, Math. Nachr. 95 (1980) 7–16.
  • [14] S. Perlis, G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc. 68 (1950) 420–426.
  • [15] R. K. Sharma, G. Mittal, On the unit group of a semisimple group algebra FqSL(2;Z5), Math Bohemica (2021).
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Gaurav Mittal This is me 0000-0001-8292-9646

Rajendra. K. Sharma This is me 0000-0001-5666-4103

Publication Date May 20, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Mittal, G., & Sharma, R. K. (2021). On unit group of finite semisimple group algebras of non-metabelian groups of order 108. Journal of Algebra Combinatorics Discrete Structures and Applications, 8(2), 59-71. https://doi.org/10.13069/jacodesmath.935938
AMA Mittal G, Sharma RK. On unit group of finite semisimple group algebras of non-metabelian groups of order 108. Journal of Algebra Combinatorics Discrete Structures and Applications. May 2021;8(2):59-71. doi:10.13069/jacodesmath.935938
Chicago Mittal, Gaurav, and Rajendra. K. Sharma. “On Unit Group of Finite Semisimple Group Algebras of Non-Metabelian Groups of Order 108”. Journal of Algebra Combinatorics Discrete Structures and Applications 8, no. 2 (May 2021): 59-71. https://doi.org/10.13069/jacodesmath.935938.
EndNote Mittal G, Sharma RK (May 1, 2021) On unit group of finite semisimple group algebras of non-metabelian groups of order 108. Journal of Algebra Combinatorics Discrete Structures and Applications 8 2 59–71.
IEEE G. Mittal and R. K. Sharma, “On unit group of finite semisimple group algebras of non-metabelian groups of order 108”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 8, no. 2, pp. 59–71, 2021, doi: 10.13069/jacodesmath.935938.
ISNAD Mittal, Gaurav - Sharma, Rajendra. K. “On Unit Group of Finite Semisimple Group Algebras of Non-Metabelian Groups of Order 108”. Journal of Algebra Combinatorics Discrete Structures and Applications 8/2 (May 2021), 59-71. https://doi.org/10.13069/jacodesmath.935938.
JAMA Mittal G, Sharma RK. On unit group of finite semisimple group algebras of non-metabelian groups of order 108. Journal of Algebra Combinatorics Discrete Structures and Applications. 2021;8:59–71.
MLA Mittal, Gaurav and Rajendra. K. Sharma. “On Unit Group of Finite Semisimple Group Algebras of Non-Metabelian Groups of Order 108”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 8, no. 2, 2021, pp. 59-71, doi:10.13069/jacodesmath.935938.
Vancouver Mittal G, Sharma RK. On unit group of finite semisimple group algebras of non-metabelian groups of order 108. Journal of Algebra Combinatorics Discrete Structures and Applications. 2021;8(2):59-71.