Araştırma Makalesi
BibTex RIS Kaynak Göster

Poliakrilamid ve Tutunum Kimyasallarıyla Desteklenen Nanofibrillenmiş Selülozun Geri Dönüştürülmüş Atık Kağıtların Mekanik/Fiziksel Özellikleri Üzerine Etkisi

Yıl 2023, , 742 - 748, 31.12.2023
https://doi.org/10.35229/jaes.1385598

Öz

Dünya genelinde atık kağıtların yeniden değerlendirilerek (recycling) tek başlarına veya bağlayıcı ve katkı kimyasalları ile karıştırılarak başarılı bir şekilde kağıt üretimi gerçekleştirilmektedir. Atık kağıttan üretilen kağıt ve kağıt ürünlerinin üretim ve tüketim miktarları ve çeşitlilikleri her geçen yıl artmaktadır. Fakat üretilen kağıtların geri dönüşüm koşulları sebebi ile geri dönüştürülmüş liflerden üretilen kağıtların, işlenmemiş liflerden üretilen kağıtlara göre daha düşük mukavemet özelliklerine sahip fiziksel ve direnç özellikleri azalmaktadır Atık kağıtlardan fluting kağıt üretiminde güçlendirici katkı maddeleri olarak poliakrilamid ve kolloidal silika bazlı retensiyon kimyasalları ile birlikte nanoselülozların kullanımı da giderek yaygınlaşmaktadır çünkü selüloz nanofibriller (CNF) nanometre ölçeğindeki olağanüstü özellikleri ile kağıt kalitesinin arttırılmasını sağlar. Bu çalışmada fluting kağıt hamuruna; Rapid Köthen laboratuvar deney kağıdı makinesinde 130 g/m2 fluting kağıtların üretimi sırasında %2 ve %4 konsantrasyonlarında CNF, %1 konsantrasyonunda PAM ve %1 konsantrasyonda Retensiyon Kimyasalı (RK) (Perform PA 8136) gibi katkılar ilave edilerek farklı kombinasyonlarla fluting kağıdı üretilmiş olup akabinde fiziksel ve mekaniksel testlere tabi tutulmuştur. Sonuçlar incelendiğinde; mekanik özelliklerden kopma direci, patlama direnci ve iç bağ mukavemeti değerlerinin kontrol fluting hamur liflerine nazaran sırasıyla %13.9, 20.9 ve 15.2 oranında artış gösterdiği ve hava geçirgenliği (porozite) değerinin ise kontrol numunesine göre %32.9’luk bir azalma gösterdiği gözlemlenmiştir. Elde edilen bu değer üretilen kağıtların kontrol hamuruna nazaran daha iyi mukavemet özellikleri sergilediğini ortaya koymuştur.

Kaynakça

  • Afra, E., Mohammadnejad, S. & Saraeyan, A. (2016). Cellulose nanofibils as coating material and its effects on paper properties. Progress in Organic Coatings, 101, 455-460.
  • Balea, A., Blanco, A., Monte, M.C., Merayo, N. & Negro, C. (2016a). Effect of bleached eucalyptus and pine cellulose nanofibers on the physico- mechanical properties of cartonboard. BioResources, 11(4), 8123-8138.
  • Balea, A., Merayo, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blanco, A. & Negro, C. (2016b). Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources, 11, 3416-3431.
  • Balea, A., Merayo, N., Fuente, E., Negro, C., Delgado- Aguilar, M., Mutje, P. & Blanco, A. (2018). Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, 25, 1339-1351.
  • Balea, A., Sanchez-Salvador, J.L., Monte M.C., Merayo, N., Negro, C. & Blanco, A. (2019). In situ production and application of cellulose nanofibers to improve recycled paper production. Molecules, 24(9), 1800.
  • Balea, A., Fuente, E., Monte, M. C., Merayo, N., Campano, C., Negro, C. & Blanco, A. (2020). Industrial application of nanocelluloses in papermaking: A review of challenges, technical solutions, and market perspectives. Molecules, 25(3), 526.
  • Beneventi, D., Chaussy, D., Curtil, D., Zolin, L., Gerbaldi, C. & Penazzi, N. (2014). Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates. Industrial & Engineering Chemistry Research, 53, 10982-10989.
  • Campano, C., Merayo, N., Balea, A., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P. & Blanco, Á. (2018). Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 25, 269-280.
  • Chen, Y., Wan, J., Wu, Q., Ma, Y. & Huang, M. (2016). Effect of recycling on fundamental properties of hardwood and wheat straw pulp fibers, and of handsheets made thereof. Cellulose Chem. Technol., 50, (9-10), 1061-1067.
  • Delgado-Aguilar, M., González, I., Pélach, M.A., De La Fuente, E. & Negro, C. (2015). Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose, 22, 789-802.
  • Ehman, N.V., Felissia F.E., Tarrés, Q., Vallejos, M.E., Delgado-Aguilar, M., Mutje´, P. & Area M.C. (2020). Effect of nanofiber addition on the physical–mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose, 27, 10811-10823.
  • Fidan, H., Tozluoğlu, A., Tutuş, A., Poyraz, B., Arslan, R., Sertkaya, S., ... & Kıllı, U. (2021). Application of modified cellulose nanofibrils as coating suspension on recycled paper using size press. Nordic Pulp & Paper Research Journal, 36(3), 523-535.
  • González, I., Boufi, S., Pèlach, M. A., Alcalà, M., Vilaseca, F. & Mutjé, P. (2012). Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources, 7(4), 5167-5180.
  • Hassan, E.A., Hassan, M.L. & Oksman, K. (2011). Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci., 43(1), 76-82.
  • He, M., Yang, G., Cho, B., Lee, Y.K. & Won, J. (2017). Effects of addition method and fibrillation degree of cellulose nanofibrils on furnish drainability and paper properties. Cellulose, 24, 5657-5669.
  • Hubbe, M. (2006). Bonding between cellulosic fibers in the absence and presence of dry-strength agents – A review. BioResources, 1(2), 281-318.
  • Kang, T. & Paulapuro, H. (2006). Effect of external fibrillation on paper strength. Pulp Paper: Canada, 107, 7/8, 51-54.
  • Koubaa, A. & Koran, Z. (1995). Measure of the internal bond strength of paper/board. Tappi J., 78(3), 103-111.
  • Laurijssen, J., Marsidi, M., Westenbroek, A., Worrell, E. & Faaij, A. (2010). Paper and biomass for energy? The impact of paper recycling on energy and CO2 emissions. Resour. Conserv. Recycl., 54(12), 1208-1218.
  • Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. (2012). Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym., 90(2), 735-764.
  • Lourenço, A.F, Godinho, D., Gamelas, J.A.F., Sarmento, P. & Ferreira, P.J.T. (2019). Carboxymethylated cellulose nanofibrils in papermaking: influence on filler retention and paper properties. Cellulose, 26, 3489-3502.
  • Mansikkasalo, A., Lundmark, R. & Söderholm, P. (2014). Market behavior and policy in the recycled paper industry: a critical survey of price elasticity research. For. Policy Econ., 38, 17-29.
  • Merayo, N., Balea, A., de la Fuente, E., Blanco, Á. & Negro, C. (2017). Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose, 24, 2987-3000.
  • Pego, M.F.F., Bianchi, M.L. & Yasumura, P.K. (2020). Nanocellulose reinforcement in paper produced from fiber blending. Wood Science and Technology, 54, 1587-1603.
  • Petroudy, S.R.D., Syverud K., Chinga-Carrasco, G., Ghasemain, A. & Resalati, H. (2014). Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydrate Polymers, 99, 311-318.
  • Salam, A., Lucia, L.A. & Jameel, H. (2013). A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustainable Chemistry & Engineering, 1(12), 1584-1592.
  • Sanchez-Salvador, J.L., Balea, A., Monte, M.C., Negro, C., Miller, M., Olson, J. & Blanco, A. (2020). Comparison of mechanical and chemical nanocellulose as additives to reinforce recycled cardboard. Scientific Reports 10(1).
  • Sertkaya, S., Arslan, R., Tozluoğlu, A., Fidan, H., Erol, Ö., Ünal, H. İ. & Candan, Z. (2023). Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2055-2068.
  • Shen, Z., Rajabi-Abhari, A., Oh, K., Yang, G., Youn, H. J. & Lee, H.L. (2021). Improving the barrier properties of packaging paper by polyvinyl alcohol based polymer coating - Effect of the base paper and nanoclay. Polymers, 13(8), 1334.
  • Taipale, T., Osterberg, M., Nykanen, A., Ruokolainen, J. & Laine, J. (2010). Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose, 17, 1005–1020.
  • Tozluoğlu, A., Fidan, H., Tutuş, A., Arslan, R., Sertkaya, S., Poyraz, B., Dikmen Küçük, S., Sözbir, T., Yemşen, B. & Gücüş, M.O. (2021). Reinforcement potential of modified nanofibrillated cellulose in recycled paper production. BioResources, 16(1), 911-941.
  • Tozluoğlu, A. & Fidan H. (2023). Effect of size press coating of cationic starch/nanofibrillated cellulose on physical and mechanical properties of recycled papersheets. BioResources, 18(3), 5993-6012.
  • Xu, Y., Kuang, Y., Salminen, P. & Chen, G. (2016). The influence of nano-fibrillated cellulose as a coating component in paper coating. BioResources, 11(2), 4342-4352.
  • Zhang, Z., Macquarrie, D.J., Budarin, V.L., Hunt, A.J., Gronnow, M.J., Fan, J., Shuttleworth, P.S., Clark, J.H. & Matharu, A.S. (2015). Low- temperature microwave-assisted pyrolysis of waste office paper and the application of biooil as an Al adhesive. Green Chemistry, 17(1), 260-270.

Effect of Nanofibrillated Cellulose Reinforced with Polyacrylamide and Retention Chemicals on the Mechanical/Physical Properties of Recycled Waste Papers

Yıl 2023, , 742 - 748, 31.12.2023
https://doi.org/10.35229/jaes.1385598

Öz

Around the world, paper is produced successfully by recycling waste paper alone or by mixing it with binders and additive chemicals. The production and consumption amounts and diversity of paper and paper products produced from waste paper are increasing every year. However, due to the recycling conditions of the produced papers, the physical and resistance properties of papers produced from recycled fibers have lower strength properties than papers produced from virgin fibers. Nanocelluloses are also used along with polyacrylamide and colloidal silica-based retention chemicals as strengthening additives in the production of fluting paper from waste papers. It is becoming increasingly widespread because cellulose nanofibrils (CNF) enable improving paper quality with their extraordinary properties at the nanometer scale. In this study, fluting paper pulp; During the production of 130 g/m2 fluting papers in the Rapid Köthen laboratory test paper machine, fluting paper was produced with different combinations by adding additives such as CNF at 2% and 4% concentrations, PAM at 1% concentration and Retention Chemical (RK) (Perform PA 8136) at 1% concentration. It was subsequently subjected to physical and mechanical tests. When the results are examined; It was observed that the mechanical properties such as tensile strength, bursting resistance and internal bond strength increased by 13.9, 20.9 and 15.2%, respectively, compared to the control fluting pulp fibers, and the air permeability (porosity) value decreased by 32.9% compared to the control sample. This value obtained revealed that the produced papers exhibited better strength properties compared to the control pulp.

Kaynakça

  • Afra, E., Mohammadnejad, S. & Saraeyan, A. (2016). Cellulose nanofibils as coating material and its effects on paper properties. Progress in Organic Coatings, 101, 455-460.
  • Balea, A., Blanco, A., Monte, M.C., Merayo, N. & Negro, C. (2016a). Effect of bleached eucalyptus and pine cellulose nanofibers on the physico- mechanical properties of cartonboard. BioResources, 11(4), 8123-8138.
  • Balea, A., Merayo, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blanco, A. & Negro, C. (2016b). Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources, 11, 3416-3431.
  • Balea, A., Merayo, N., Fuente, E., Negro, C., Delgado- Aguilar, M., Mutje, P. & Blanco, A. (2018). Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, 25, 1339-1351.
  • Balea, A., Sanchez-Salvador, J.L., Monte M.C., Merayo, N., Negro, C. & Blanco, A. (2019). In situ production and application of cellulose nanofibers to improve recycled paper production. Molecules, 24(9), 1800.
  • Balea, A., Fuente, E., Monte, M. C., Merayo, N., Campano, C., Negro, C. & Blanco, A. (2020). Industrial application of nanocelluloses in papermaking: A review of challenges, technical solutions, and market perspectives. Molecules, 25(3), 526.
  • Beneventi, D., Chaussy, D., Curtil, D., Zolin, L., Gerbaldi, C. & Penazzi, N. (2014). Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates. Industrial & Engineering Chemistry Research, 53, 10982-10989.
  • Campano, C., Merayo, N., Balea, A., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P. & Blanco, Á. (2018). Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 25, 269-280.
  • Chen, Y., Wan, J., Wu, Q., Ma, Y. & Huang, M. (2016). Effect of recycling on fundamental properties of hardwood and wheat straw pulp fibers, and of handsheets made thereof. Cellulose Chem. Technol., 50, (9-10), 1061-1067.
  • Delgado-Aguilar, M., González, I., Pélach, M.A., De La Fuente, E. & Negro, C. (2015). Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose, 22, 789-802.
  • Ehman, N.V., Felissia F.E., Tarrés, Q., Vallejos, M.E., Delgado-Aguilar, M., Mutje´, P. & Area M.C. (2020). Effect of nanofiber addition on the physical–mechanical properties of chemimechanical pulp handsheets for packaging. Cellulose, 27, 10811-10823.
  • Fidan, H., Tozluoğlu, A., Tutuş, A., Poyraz, B., Arslan, R., Sertkaya, S., ... & Kıllı, U. (2021). Application of modified cellulose nanofibrils as coating suspension on recycled paper using size press. Nordic Pulp & Paper Research Journal, 36(3), 523-535.
  • González, I., Boufi, S., Pèlach, M. A., Alcalà, M., Vilaseca, F. & Mutjé, P. (2012). Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources, 7(4), 5167-5180.
  • Hassan, E.A., Hassan, M.L. & Oksman, K. (2011). Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse. Wood Fiber Sci., 43(1), 76-82.
  • He, M., Yang, G., Cho, B., Lee, Y.K. & Won, J. (2017). Effects of addition method and fibrillation degree of cellulose nanofibrils on furnish drainability and paper properties. Cellulose, 24, 5657-5669.
  • Hubbe, M. (2006). Bonding between cellulosic fibers in the absence and presence of dry-strength agents – A review. BioResources, 1(2), 281-318.
  • Kang, T. & Paulapuro, H. (2006). Effect of external fibrillation on paper strength. Pulp Paper: Canada, 107, 7/8, 51-54.
  • Koubaa, A. & Koran, Z. (1995). Measure of the internal bond strength of paper/board. Tappi J., 78(3), 103-111.
  • Laurijssen, J., Marsidi, M., Westenbroek, A., Worrell, E. & Faaij, A. (2010). Paper and biomass for energy? The impact of paper recycling on energy and CO2 emissions. Resour. Conserv. Recycl., 54(12), 1208-1218.
  • Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. (2012). Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym., 90(2), 735-764.
  • Lourenço, A.F, Godinho, D., Gamelas, J.A.F., Sarmento, P. & Ferreira, P.J.T. (2019). Carboxymethylated cellulose nanofibrils in papermaking: influence on filler retention and paper properties. Cellulose, 26, 3489-3502.
  • Mansikkasalo, A., Lundmark, R. & Söderholm, P. (2014). Market behavior and policy in the recycled paper industry: a critical survey of price elasticity research. For. Policy Econ., 38, 17-29.
  • Merayo, N., Balea, A., de la Fuente, E., Blanco, Á. & Negro, C. (2017). Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose, 24, 2987-3000.
  • Pego, M.F.F., Bianchi, M.L. & Yasumura, P.K. (2020). Nanocellulose reinforcement in paper produced from fiber blending. Wood Science and Technology, 54, 1587-1603.
  • Petroudy, S.R.D., Syverud K., Chinga-Carrasco, G., Ghasemain, A. & Resalati, H. (2014). Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydrate Polymers, 99, 311-318.
  • Salam, A., Lucia, L.A. & Jameel, H. (2013). A novel cellulose nanocrystals-based approach to improve the mechanical properties of recycled paper. ACS Sustainable Chemistry & Engineering, 1(12), 1584-1592.
  • Sanchez-Salvador, J.L., Balea, A., Monte, M.C., Negro, C., Miller, M., Olson, J. & Blanco, A. (2020). Comparison of mechanical and chemical nanocellulose as additives to reinforce recycled cardboard. Scientific Reports 10(1).
  • Sertkaya, S., Arslan, R., Tozluoğlu, A., Fidan, H., Erol, Ö., Ünal, H. İ. & Candan, Z. (2023). Buğday sapından nanoselüloz üretiminde farklı enzimatik ön muamele işlemlerinin etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2055-2068.
  • Shen, Z., Rajabi-Abhari, A., Oh, K., Yang, G., Youn, H. J. & Lee, H.L. (2021). Improving the barrier properties of packaging paper by polyvinyl alcohol based polymer coating - Effect of the base paper and nanoclay. Polymers, 13(8), 1334.
  • Taipale, T., Osterberg, M., Nykanen, A., Ruokolainen, J. & Laine, J. (2010). Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose, 17, 1005–1020.
  • Tozluoğlu, A., Fidan, H., Tutuş, A., Arslan, R., Sertkaya, S., Poyraz, B., Dikmen Küçük, S., Sözbir, T., Yemşen, B. & Gücüş, M.O. (2021). Reinforcement potential of modified nanofibrillated cellulose in recycled paper production. BioResources, 16(1), 911-941.
  • Tozluoğlu, A. & Fidan H. (2023). Effect of size press coating of cationic starch/nanofibrillated cellulose on physical and mechanical properties of recycled papersheets. BioResources, 18(3), 5993-6012.
  • Xu, Y., Kuang, Y., Salminen, P. & Chen, G. (2016). The influence of nano-fibrillated cellulose as a coating component in paper coating. BioResources, 11(2), 4342-4352.
  • Zhang, Z., Macquarrie, D.J., Budarin, V.L., Hunt, A.J., Gronnow, M.J., Fan, J., Shuttleworth, P.S., Clark, J.H. & Matharu, A.S. (2015). Low- temperature microwave-assisted pyrolysis of waste office paper and the application of biooil as an Al adhesive. Green Chemistry, 17(1), 260-270.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Lif ve Kağıt Teknolojisi, Orman Ürünleri Kimyası
Bölüm Makaleler
Yazarlar

Ayhan Tozluoğlu 0000-0002-1828-9450

Erken Görünüm Tarihi 30 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 6 Kasım 2023
Kabul Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Tozluoğlu, A. (2023). Poliakrilamid ve Tutunum Kimyasallarıyla Desteklenen Nanofibrillenmiş Selülozun Geri Dönüştürülmüş Atık Kağıtların Mekanik/Fiziksel Özellikleri Üzerine Etkisi. Journal of Anatolian Environmental and Animal Sciences, 8(4), 742-748. https://doi.org/10.35229/jaes.1385598


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS