Atık Su Arıtma Tesisinde Oluşan Algal Biyofilm Kökenli Biyojenik Demir Nanopartiküller ve Boya Giderim Performansları
Year 2024,
Volume: 9 Issue: 2, 174 - 183, 30.06.2024
İlyas Taner Demirel
,
Bülent Akar
,
Cemalettin Baltacı
,
Ömer Karpuz
,
Esma Gülbahar
Abstract
Çevre kirliliği giderimi çalışmalarında biyoremediasyon, toksik maddelerin çevreden uzaklaştırılmasında veya dönüştürülmesinde çok önemli bir rol oynamaktadır. Bakteriler, mayalar, küfler, algler ve bitkiler biyoremediasyonda yaygın olarak kullanılmaktadır. Son zamanlarda, yeşil sentezle elde edilmiş nanopartiküller de biyoremediasyon uygulamalarında tercih edilmektedir. Bu çalışmada, Gümüşhane Belediyesi Atıksu Arıtma Tesisi çökeltme havuzlarında doğal olarak oluşan alg biyofilmlerinden demir oksit nanopartikülleri (FeONP'ler) sentezlenmiştir. Bu biyolojik nanopartiküller, metilen mavisi (MB), malaşit yeşili (MG) ve fenol kırmızısı (PR) gibi suyu kirleten boyaların adsorpsiyon verimliliklerini araştırmak için kullanılmıştır. Sentezlenen FeONP'ler, Fourier dönüşümü kızılötesi spektroskopisi (FTIR) taramalı elektron mikroskobu (SEM), enerji dağılımlı X-ışını spektrometrisi (EDX) ve X-ışını kırınımı (XRD) kullanılarak karakterize edilmiştir. Etkinliklerini test etmek için MB, MG ve PR boya çözeltileri 5.0, 10.0 ve 20 g/L FeONP konsantrasyonları ile muamele edilmiş ve çözeltide kalan boya konsantrasyonları UV-VIS spektrofotometresi ile ölçülmüştür. Sonuçlar, algal biyofilmlerden elde edilen FeONP'lerin MB, MG ve PR'yi etkili bir şekilde ortadan kaldırdığını ve en yüksek verimliliğin PR’de elde edildiğini göstermiştir.
References
-
Abbas, M., Rao, B.P., Naga, S.M., Takahashi, M. &
Kim, C. (2013). Synthesis of high magnetization
hydrophilic magnetite (Fe3O4) nanoparticles in
single reaction-surfactantless polyol process.
Ceramics International, 39(7), 7605-7611. DOI:
10.1016/j.ceramint.2013.03.015
-
Akar, B., Akar, Z. & Şahin, B. (2019). Identification of
antioxidant activity by different methods of a
freshwater alga Microspora sp. collected from a high mountain lake. Hittite Journal of Science and
Engineering, 6(1), 25-29. DOI:
10.17350/HJSE19030000129
-
Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha,
A. & Lin, M. (2018). Green synthesis of silver
nanoparticles using turmeric extracts and
investigation of their antibacterial activities.
Colloids and Surfaces B: Biointerfaces, 171, 398-
405. DOI: 10.1016/j.colsurfb.2018.07.059
-
Amlani, M., & Yetgin, S. (2022). Seaweeds: Bioactive
components and properties, potential risk factors,
uses, extraction and purification methods. Marine
Science and Technology Bulletin, 11(1), 9-31.
Andersen, R.A. (1992). Diversity of eukaryotic algae.
Biodiversity and Conservation, 1, 267-292. DOI:
10.1007/BF00693765
-
Arabi, S. & Sohrabi, M., (2014). Removal of methylene
blue, a basic dye, from aqueous solutions using
nano-zerovalent iron. Water Science and
Technology. 70, 24-31. DOI:
10.2166/wst.2014.189
-
Azubuike, C.C., Chikere, C.B. & Okpokwasili, G.C.
(2020). Bioremediation: An eco-friendly
sustainable technology for environmental
management. In: Saxena, G., Bharagava, R. (Ed)
Bioremediation of Industrial Waste for
Environmental Safety: Volume I: Industrial Waste
and Its Management, 19-39p, Springer,
Singapore. DOI: 10.1007/978-981-13-1891-7_2
-
Badawi, A.K., Abd Elkodous, M. & Ali, G.A. (2021).
Recent advances in dye and metal ion removal
using efficient adsorbents and novel nano-based
materials: an overview. RSC Advances, 11(58),
36528-36553. DOI: 10.1039/D1RA06892J
-
Banerjee, S. & Chattopadhyaya, M.C. (2017).
Adsorption characteristics for the removal of a
toxic dye, tartrazine from aqueous solutions by a
low cost agricultural by-product. Arabian Journal
of Chemistry, 10, 1629-1638. DOI:
10.1016/j.arabjc.2013.06.005
-
Berger, P., Adelman, N. B., Beckman, K. J., Campbell,
D. J., Ellis, A.B. & Lisensky, G.C. (1999).
Preparation and properties of an aqueous
ferrofluid. Journal of Chemical Education, 76(7),
943-948. DOI: 10.1021/ed076p943
-
Bozbeyoglu, P., Duran, C., Baltaci, C. & Gundogdu, A.
(2020). Adsorption of Methylene Blue from
Aqueous Solution with Sulfuric Acid Activated
Corn Cobs: Equilibrium, Kinetics, and
Thermodynamics Assessment. Hittite Journal of
Science and Engineering, 7(3), 239-256. DOI:
10.17350/HJSE19030000193
-
Carballo, T., Gil, M. V., Gómez, X., González-Andrés,
F. & Morán, A. (2008). Characterization of
different compost extracts using Fouriertransform infrared spectroscopy (FTIR) and
thermal analysis. Biodegradation, 19, 815-830.
DOI: 10.1007/s10532-008-9184-4
-
Chekroun, K.B., Sánchez, E. & Baghour, M. (2014).
The role of algae in bioremediation of organic
pollutants. International Research Journal of
Public and Environmental Health, 1, 19-32.
-
Demirezen, D.A., Yıldız, Y.Ş., Yılmaz, Ş. & Yılmaz,
D.D. (2019). Green synthesis and characterization
of iron oxide nanoparticles using Ficus carica
(common fig) dried fruit extract. Journal of
Bioscience and Bioengineering, 127(2), 241-245.
DOI: 10.1016/j.jbiosc.2018.07.024
-
Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah,
A.K., Taghizadeh, S., Ghasemi, Y. &
Berenjian, A. (2018). Plant-mediated synthesis
and applications of iron nanoparticles. Molecular
Biotechnology, 60, 154-168. DOI:
10.1007/s12033-017-0053-4
-
Fan, S., Wang, Y., Li, Y., Tang, J., Wang, Z., Tang, J.,
Li, X. & Hu, K. (2017). Facile synthesis of tea
waste/Fe3O4 nanoparticle composite for
hexavalent chromium removal from aqueous
solution. RSC Advances, 7(13), 7576-7590. DOI:
10.1039/C6RA27781K
-
Gedikli, H., Akdogan, A., Karpuz, O., Akmese, O.,
Kobya, H. N. & Baltaci, C. (2024). Aflatoxin
detoxification by biosynthesized iron oxide
nanoparticles using green and black tea extracts,
BioResources, 19(1), 380-404. DOI:
10.15376/biores.19.1.380-404
-
Golshahi, S., Ahangar, A,G., Mir, N. & Ghorbani, M.
(2018). A comparison of the use of different
sources of nanoscale iron particles on the
concentration of micronutrients and plasma
membrane stability in sorghum. Journal of Soil
Science and Plant Nutrition, 18(1), 236-252. DOI:
10.4067/S0718-95162018005000902
-
Gong, J. & Lin, X. (2003). Facilitated electron transfer of
hemoglobin embedded in nanosized Fe3O4 matrix
based on paraffin impregnated graphite electrode
and electrochemical catalysis for trichloroacetic
acid. Microchemical Journal, 75(1), 51-57. DOI:
10.1016/S0026-265X(03)00053-5
-
Hamdy, A., Mostafa, M. K. & Nasr, M. (2018). Zerovalent iron nanoparticles for methylene blue
removal from aqueous solutions and textile
wastewater treatment, with cost estimation. Water
Science and Technology, 78(2), 367-378. DOI:
10.2166/wst.2018.306
-
Hoffmann, L. (1989). Algae of terrestrial habitats. The
Botanical Review, 55, 77-105. DOI:
10.1007/BF02858529
-
Jain, R., Mendiratta, S., Kumar, L. & Srivastava, A.
(2021). Green synthesis of iron nanoparticles
using Artocarpus heterophyllus peel extract and
their application as a heterogeneous Fenton-like
catalyst for the degradation of Fuchsin Basic dye.
Current Research in Green and Sustainable
Chemistry, 4, 100086. DOI:
10.1016/j.crgsc.2021.100086
-
Joshi, S., Garg, V.K., Kataria, N. & Kadirvelu, K.
(2019). Applications of Fe3O4@AC nanoparticles
for dye removal from simulated wastewater,
Chemosphere, 236, 1-11. DOI:
10.1016/j.chemosphere.2019.07.011
-
Karakullukcu, V., Akar, B., Baltacı, C., Duzgun, A.O.
& Karpuz, O. (2023). Characterization,
antioxidant and antimicrobial activities of iron
nanoparticles synthesized using firethorn fruit
(Pyracantha coccinea Roemer) extracts,
Karaelmas Science Journal, 13(2), 255-265. DOI:
10.7212/karaelmasfen.1297963
-
Kesaano, M. & Sims, R.C. (2014). Algal biofilm based
technology for wastewater treatment. Algal
Research, 5, 231-240. DOI:
10.1016/j.algal.2014.02.003
-
Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles:
Properties, applications and toxicities. Arabian
journal of Chemistry, 12(7), 908-931. DOI:
10.1016/j.arabjc.2017.05.011
-
Khan, Y., Sadia, H., Ali Shah, S.Z., Khan, M.N., Shah,
A.A., Ullah, N., Ullah, M.F. Bibi, H., Bafakeeh,
O.T., Khedher, N.B., Eldin, S.M. Fadhl, B.M.
& Khan, M.I. (2022). Classification, synthetic,
and characterization approaches to nanoparticles,
and their applications in various fields of
nanotechnology: A review. Catalysts, 12(11),
1386. DOI: 10.3390/catal12111386
-
Kumar, S.R. & Gopinath, P. (2017). Nanobioremediation applications of nanotechnology
for bioremediation. In: Wang, L.K., Wang, M.S.,
Hung, Y.T., Shammas, N.K., Chen,J.P. (Ed),
Handbook of advanced industrial and hazardous
wastes management, 27-48p, CRC Press, New
York.
-
Leadbeater, B.S.C. & Callow, M.E. (1992). Formation,
composition and physiology of algal biofilms. In:
Melo, L.F., Bott, T.R., Fletcher, M., Capdeville,
B. (Ed) Biofilms-science and technology, 149-
162p. Springer, Netherlands.
-
Lewis Oscar, F., Vismaya, S., Arunkumar, M.,
Thajuddin, N., Dhanasekaran, D. & Nithya, C.
(2016). Algal nanoparticles: synthesis and
biotechnological potentials. In: Thajuddin, N.,
Dhanasekaran, D. (Ed), Algae-organisms for
imminent biotechnology, 157-182p. Intechopen,
Croatia.
-
Mahdavinia, G.R., Aghaie, H., Sheykhloie, H., Vardini,
M.T. & Etemadi, H. (2013). Synthesis of
CarAlg/MMt nanocomposite hydrogels and
adsorption of cationic crystal violet.
Carbohydrate Polymers, 98(1), 358-365. DOI:
10.1016/j.carbpol.2013.05.096
-
Naidu, R., Biswas, B., Willett, I.R., Cribb, J., Singh,
B.K., Nathanail, C.P., Coulon, F., Semple,
K.T., Jones, K.C., Barclay, A. & Aitken, R.J.
(2021). Chemical pollution: A growing peril and
potential catastrophic risk to humanity.
Environment International, 156, 106616. DOI:
10.1016/j.envint.2021.106616
-
Nwodika, C. & Onukwuli, D.O. (2017). Adsorption study
of kinetics and equilibrium of basic dye on kola
nut pod carbon. Gazi University Journal of
Science, 30(4), 86-102.
-
Plaza, M., Santoyo, S., Jaime, L., Reina, G.G.B.,
Herrero, M., Señoráns, F.J. & Ibáñez, E.
(2010). Screening for bioactive compounds from
algae. Journal of Pharmaceutical and Biomedical
Analysis, 51(2), 450-455. DOI:
10.1016/j.jpba.2009.03.016
-
Rueden, C., Dietz, C., Horn, M., Schindelin, J.,
Northan, B., Berthold, M. & Eliceiri, K. (2021).
ImageJ Ops [Software]. https://imagej.net/Ops
-
Saravanan, A., Kumar, P.S., Jeevanantham, S.,
Karishma, S., Tajsabreen, B., Yaashikaa, P.R.
& Reshma, B. (2021). Effective
water/wastewater treatment methodologies for
toxic pollutants removal: Processes and
applications towards sustainable development.
Chemosphere, 280, 130595. DOI:
10.1016/j.chemosphere.2021.130595
-
Ścieszka, S. & Klewicka, E. (2019). Algae in food: A
general review. Critical Reviews in Food Science
and Nutrition, 59(21), 3538-3547.
-
Shah, S.A.A., Hassan, S.S.U., Bungau, S., Si, Y., Xu, H.,
Rahman, M.H., Behl, T., Gitea, D., Pavel, F.M.,
Aron, R.A.C., Pasca, B. & Nemeth, S. (2020).
Chemically diverse and biologically active
secondary metabolites from marine Phylum
chlorophyta. Marine Drugs, 18(10), 493. DOI:
10.3390/md18100493
-
Shojaei, T.R., Soltani, S. & Derakhshani, M. (2022).
Synthesis, properties, and biomedical applications
of inorganic bionanomaterials. In: Barhoum A.,
Danquah, M.K. (Ed), Fundamentals of
bionanomaterials, 139-174p. Elsevier,
Netherlands.
-
Sulaiman, S., Azis, R.A.S., Ismail, I., Man, H.C., Yusof,
K.F.M., Abba, M.U. & Katibi, K.K. (2021).
Adsorptive removal of copper (II) ions from
aqueous solution using a magnetite nanoadsorbent from mill scale waste: synthesis,
characterization, adsorption and kinetic modeling
studies. Nanoscale Research Letters, 16, 1-17.
DOI: 10.1186/s11671-021-03622-y
-
Thapa, S., Bharti, A. & Prasanna, R. (2017). Algal
biofilms and their biotechnological significance.
In: Rastogi, R.P., Madamwar, D. Pandey, A. (Ed),
Algal Green Chemistry, 285-303p. Elsiever,
Netherlands.
-
Tripathi, S., Sanjeevi, R., Anuradha, J., Chauhan, D.S.
& Rathoure, A.K. (2022). Nano-bioremediation:
nanotechnology and bioremediation. In:
Khosrow, M. (Ed), Research Anthology on
Emerging Techniques in Environmental
Remediation, 135-149p. IGI Global.
-
Vázquez-Núñez, E., Molina-Guerrero, C.E., PeñaCastro, J. M., Fernández-Luqueño, F. & de la
Rosa-Álvarez, M. (2020). Use of
nanotechnology for the bioremediation of
contaminants: A review, Processes, 8(7), 826.
DOI: 10.3390/pr8070826
-
Wang, C.Y., Zhu, G.M., Chen, Z.Y. & Lin, Z.G. (2002).
The preparation of magnetite Fe3O4 and its
morphology control by a novel arcelectrodeposition method. Materials Research Bulletin, 37(15), 2525-2529. DOI:10.1016/S0025-5408(01)00787-5
-
Westra, L., Miller, P., Karr, J.R., Rees, W.E. &
Ulanowicz, R.E. (2000). Ecological integrity and
the aims of the Global Integrity Project. In:
Pimentel, D., Westra, L., Noss R.F., (Ed),
Ecological Integrity: Integrating Environment,
Conservation and Health, 19-41p., Island Press,
Washington, DC, USA.
-
Yusefi, M., Shameli, K., Rasit, A.R., Pang, S.W. &
Teow, S.Y. (2020). Evaluating anticancer activity
of plant-mediated synthesized iron oxide
nanoparticles using Punica granatum fruit peel
extract. Journal of Molecular Structure, 1204.
DOI: 10.1016/j.molstruc.2019.127539.
Biogenic Iron Oxide Nanoparticles Based on Algal Biofilm Formed in the Wastewater Treatment Plant and Their Dye Removal Performance
Year 2024,
Volume: 9 Issue: 2, 174 - 183, 30.06.2024
İlyas Taner Demirel
,
Bülent Akar
,
Cemalettin Baltacı
,
Ömer Karpuz
,
Esma Gülbahar
Abstract
In the field of environmental pollution removal, bioremediation plays a crucial role in removing or converting toxic substances from the environment. Bacteria, yeasts, molds, algae, and plants are widely used in bioremediation events. Recently, green-synthesized nanoparticles have also been employed in bioremediation applications. In this study, iron oxide nanoparticles (FeONPs) were synthesized from algal biofilms that are naturally formed in the settling ponds of the Gümüşhane Municipality Wastewater Treatment Plant. These biological nanoparticles were utilized to investigate their adsorption efficiency for water-polluting dyes such as methylene blue (MB), malachite green (MG), and phenol red (PR). The synthesized FeONPs were characterized using Fourier transform infrared spectroscopy (FTIR) scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). To test their efficacy, MB, MG, and PR dye solutions were treated with 5.0, 10.0, and 20 g/L FeONP concentrations. The remaining dye concentrations were quantified with a UV-VIS spectrophotometer after filtration. The results showed that FeONPs obtained from algal biofilms effectively removed MB, MG, and PR, with the highest efficiency observed for PR.
Ethical Statement
Ethics Committee Approval Certificate is not required for this study.
References
-
Abbas, M., Rao, B.P., Naga, S.M., Takahashi, M. &
Kim, C. (2013). Synthesis of high magnetization
hydrophilic magnetite (Fe3O4) nanoparticles in
single reaction-surfactantless polyol process.
Ceramics International, 39(7), 7605-7611. DOI:
10.1016/j.ceramint.2013.03.015
-
Akar, B., Akar, Z. & Şahin, B. (2019). Identification of
antioxidant activity by different methods of a
freshwater alga Microspora sp. collected from a high mountain lake. Hittite Journal of Science and
Engineering, 6(1), 25-29. DOI:
10.17350/HJSE19030000129
-
Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha,
A. & Lin, M. (2018). Green synthesis of silver
nanoparticles using turmeric extracts and
investigation of their antibacterial activities.
Colloids and Surfaces B: Biointerfaces, 171, 398-
405. DOI: 10.1016/j.colsurfb.2018.07.059
-
Amlani, M., & Yetgin, S. (2022). Seaweeds: Bioactive
components and properties, potential risk factors,
uses, extraction and purification methods. Marine
Science and Technology Bulletin, 11(1), 9-31.
Andersen, R.A. (1992). Diversity of eukaryotic algae.
Biodiversity and Conservation, 1, 267-292. DOI:
10.1007/BF00693765
-
Arabi, S. & Sohrabi, M., (2014). Removal of methylene
blue, a basic dye, from aqueous solutions using
nano-zerovalent iron. Water Science and
Technology. 70, 24-31. DOI:
10.2166/wst.2014.189
-
Azubuike, C.C., Chikere, C.B. & Okpokwasili, G.C.
(2020). Bioremediation: An eco-friendly
sustainable technology for environmental
management. In: Saxena, G., Bharagava, R. (Ed)
Bioremediation of Industrial Waste for
Environmental Safety: Volume I: Industrial Waste
and Its Management, 19-39p, Springer,
Singapore. DOI: 10.1007/978-981-13-1891-7_2
-
Badawi, A.K., Abd Elkodous, M. & Ali, G.A. (2021).
Recent advances in dye and metal ion removal
using efficient adsorbents and novel nano-based
materials: an overview. RSC Advances, 11(58),
36528-36553. DOI: 10.1039/D1RA06892J
-
Banerjee, S. & Chattopadhyaya, M.C. (2017).
Adsorption characteristics for the removal of a
toxic dye, tartrazine from aqueous solutions by a
low cost agricultural by-product. Arabian Journal
of Chemistry, 10, 1629-1638. DOI:
10.1016/j.arabjc.2013.06.005
-
Berger, P., Adelman, N. B., Beckman, K. J., Campbell,
D. J., Ellis, A.B. & Lisensky, G.C. (1999).
Preparation and properties of an aqueous
ferrofluid. Journal of Chemical Education, 76(7),
943-948. DOI: 10.1021/ed076p943
-
Bozbeyoglu, P., Duran, C., Baltaci, C. & Gundogdu, A.
(2020). Adsorption of Methylene Blue from
Aqueous Solution with Sulfuric Acid Activated
Corn Cobs: Equilibrium, Kinetics, and
Thermodynamics Assessment. Hittite Journal of
Science and Engineering, 7(3), 239-256. DOI:
10.17350/HJSE19030000193
-
Carballo, T., Gil, M. V., Gómez, X., González-Andrés,
F. & Morán, A. (2008). Characterization of
different compost extracts using Fouriertransform infrared spectroscopy (FTIR) and
thermal analysis. Biodegradation, 19, 815-830.
DOI: 10.1007/s10532-008-9184-4
-
Chekroun, K.B., Sánchez, E. & Baghour, M. (2014).
The role of algae in bioremediation of organic
pollutants. International Research Journal of
Public and Environmental Health, 1, 19-32.
-
Demirezen, D.A., Yıldız, Y.Ş., Yılmaz, Ş. & Yılmaz,
D.D. (2019). Green synthesis and characterization
of iron oxide nanoparticles using Ficus carica
(common fig) dried fruit extract. Journal of
Bioscience and Bioengineering, 127(2), 241-245.
DOI: 10.1016/j.jbiosc.2018.07.024
-
Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah,
A.K., Taghizadeh, S., Ghasemi, Y. &
Berenjian, A. (2018). Plant-mediated synthesis
and applications of iron nanoparticles. Molecular
Biotechnology, 60, 154-168. DOI:
10.1007/s12033-017-0053-4
-
Fan, S., Wang, Y., Li, Y., Tang, J., Wang, Z., Tang, J.,
Li, X. & Hu, K. (2017). Facile synthesis of tea
waste/Fe3O4 nanoparticle composite for
hexavalent chromium removal from aqueous
solution. RSC Advances, 7(13), 7576-7590. DOI:
10.1039/C6RA27781K
-
Gedikli, H., Akdogan, A., Karpuz, O., Akmese, O.,
Kobya, H. N. & Baltaci, C. (2024). Aflatoxin
detoxification by biosynthesized iron oxide
nanoparticles using green and black tea extracts,
BioResources, 19(1), 380-404. DOI:
10.15376/biores.19.1.380-404
-
Golshahi, S., Ahangar, A,G., Mir, N. & Ghorbani, M.
(2018). A comparison of the use of different
sources of nanoscale iron particles on the
concentration of micronutrients and plasma
membrane stability in sorghum. Journal of Soil
Science and Plant Nutrition, 18(1), 236-252. DOI:
10.4067/S0718-95162018005000902
-
Gong, J. & Lin, X. (2003). Facilitated electron transfer of
hemoglobin embedded in nanosized Fe3O4 matrix
based on paraffin impregnated graphite electrode
and electrochemical catalysis for trichloroacetic
acid. Microchemical Journal, 75(1), 51-57. DOI:
10.1016/S0026-265X(03)00053-5
-
Hamdy, A., Mostafa, M. K. & Nasr, M. (2018). Zerovalent iron nanoparticles for methylene blue
removal from aqueous solutions and textile
wastewater treatment, with cost estimation. Water
Science and Technology, 78(2), 367-378. DOI:
10.2166/wst.2018.306
-
Hoffmann, L. (1989). Algae of terrestrial habitats. The
Botanical Review, 55, 77-105. DOI:
10.1007/BF02858529
-
Jain, R., Mendiratta, S., Kumar, L. & Srivastava, A.
(2021). Green synthesis of iron nanoparticles
using Artocarpus heterophyllus peel extract and
their application as a heterogeneous Fenton-like
catalyst for the degradation of Fuchsin Basic dye.
Current Research in Green and Sustainable
Chemistry, 4, 100086. DOI:
10.1016/j.crgsc.2021.100086
-
Joshi, S., Garg, V.K., Kataria, N. & Kadirvelu, K.
(2019). Applications of Fe3O4@AC nanoparticles
for dye removal from simulated wastewater,
Chemosphere, 236, 1-11. DOI:
10.1016/j.chemosphere.2019.07.011
-
Karakullukcu, V., Akar, B., Baltacı, C., Duzgun, A.O.
& Karpuz, O. (2023). Characterization,
antioxidant and antimicrobial activities of iron
nanoparticles synthesized using firethorn fruit
(Pyracantha coccinea Roemer) extracts,
Karaelmas Science Journal, 13(2), 255-265. DOI:
10.7212/karaelmasfen.1297963
-
Kesaano, M. & Sims, R.C. (2014). Algal biofilm based
technology for wastewater treatment. Algal
Research, 5, 231-240. DOI:
10.1016/j.algal.2014.02.003
-
Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles:
Properties, applications and toxicities. Arabian
journal of Chemistry, 12(7), 908-931. DOI:
10.1016/j.arabjc.2017.05.011
-
Khan, Y., Sadia, H., Ali Shah, S.Z., Khan, M.N., Shah,
A.A., Ullah, N., Ullah, M.F. Bibi, H., Bafakeeh,
O.T., Khedher, N.B., Eldin, S.M. Fadhl, B.M.
& Khan, M.I. (2022). Classification, synthetic,
and characterization approaches to nanoparticles,
and their applications in various fields of
nanotechnology: A review. Catalysts, 12(11),
1386. DOI: 10.3390/catal12111386
-
Kumar, S.R. & Gopinath, P. (2017). Nanobioremediation applications of nanotechnology
for bioremediation. In: Wang, L.K., Wang, M.S.,
Hung, Y.T., Shammas, N.K., Chen,J.P. (Ed),
Handbook of advanced industrial and hazardous
wastes management, 27-48p, CRC Press, New
York.
-
Leadbeater, B.S.C. & Callow, M.E. (1992). Formation,
composition and physiology of algal biofilms. In:
Melo, L.F., Bott, T.R., Fletcher, M., Capdeville,
B. (Ed) Biofilms-science and technology, 149-
162p. Springer, Netherlands.
-
Lewis Oscar, F., Vismaya, S., Arunkumar, M.,
Thajuddin, N., Dhanasekaran, D. & Nithya, C.
(2016). Algal nanoparticles: synthesis and
biotechnological potentials. In: Thajuddin, N.,
Dhanasekaran, D. (Ed), Algae-organisms for
imminent biotechnology, 157-182p. Intechopen,
Croatia.
-
Mahdavinia, G.R., Aghaie, H., Sheykhloie, H., Vardini,
M.T. & Etemadi, H. (2013). Synthesis of
CarAlg/MMt nanocomposite hydrogels and
adsorption of cationic crystal violet.
Carbohydrate Polymers, 98(1), 358-365. DOI:
10.1016/j.carbpol.2013.05.096
-
Naidu, R., Biswas, B., Willett, I.R., Cribb, J., Singh,
B.K., Nathanail, C.P., Coulon, F., Semple,
K.T., Jones, K.C., Barclay, A. & Aitken, R.J.
(2021). Chemical pollution: A growing peril and
potential catastrophic risk to humanity.
Environment International, 156, 106616. DOI:
10.1016/j.envint.2021.106616
-
Nwodika, C. & Onukwuli, D.O. (2017). Adsorption study
of kinetics and equilibrium of basic dye on kola
nut pod carbon. Gazi University Journal of
Science, 30(4), 86-102.
-
Plaza, M., Santoyo, S., Jaime, L., Reina, G.G.B.,
Herrero, M., Señoráns, F.J. & Ibáñez, E.
(2010). Screening for bioactive compounds from
algae. Journal of Pharmaceutical and Biomedical
Analysis, 51(2), 450-455. DOI:
10.1016/j.jpba.2009.03.016
-
Rueden, C., Dietz, C., Horn, M., Schindelin, J.,
Northan, B., Berthold, M. & Eliceiri, K. (2021).
ImageJ Ops [Software]. https://imagej.net/Ops
-
Saravanan, A., Kumar, P.S., Jeevanantham, S.,
Karishma, S., Tajsabreen, B., Yaashikaa, P.R.
& Reshma, B. (2021). Effective
water/wastewater treatment methodologies for
toxic pollutants removal: Processes and
applications towards sustainable development.
Chemosphere, 280, 130595. DOI:
10.1016/j.chemosphere.2021.130595
-
Ścieszka, S. & Klewicka, E. (2019). Algae in food: A
general review. Critical Reviews in Food Science
and Nutrition, 59(21), 3538-3547.
-
Shah, S.A.A., Hassan, S.S.U., Bungau, S., Si, Y., Xu, H.,
Rahman, M.H., Behl, T., Gitea, D., Pavel, F.M.,
Aron, R.A.C., Pasca, B. & Nemeth, S. (2020).
Chemically diverse and biologically active
secondary metabolites from marine Phylum
chlorophyta. Marine Drugs, 18(10), 493. DOI:
10.3390/md18100493
-
Shojaei, T.R., Soltani, S. & Derakhshani, M. (2022).
Synthesis, properties, and biomedical applications
of inorganic bionanomaterials. In: Barhoum A.,
Danquah, M.K. (Ed), Fundamentals of
bionanomaterials, 139-174p. Elsevier,
Netherlands.
-
Sulaiman, S., Azis, R.A.S., Ismail, I., Man, H.C., Yusof,
K.F.M., Abba, M.U. & Katibi, K.K. (2021).
Adsorptive removal of copper (II) ions from
aqueous solution using a magnetite nanoadsorbent from mill scale waste: synthesis,
characterization, adsorption and kinetic modeling
studies. Nanoscale Research Letters, 16, 1-17.
DOI: 10.1186/s11671-021-03622-y
-
Thapa, S., Bharti, A. & Prasanna, R. (2017). Algal
biofilms and their biotechnological significance.
In: Rastogi, R.P., Madamwar, D. Pandey, A. (Ed),
Algal Green Chemistry, 285-303p. Elsiever,
Netherlands.
-
Tripathi, S., Sanjeevi, R., Anuradha, J., Chauhan, D.S.
& Rathoure, A.K. (2022). Nano-bioremediation:
nanotechnology and bioremediation. In:
Khosrow, M. (Ed), Research Anthology on
Emerging Techniques in Environmental
Remediation, 135-149p. IGI Global.
-
Vázquez-Núñez, E., Molina-Guerrero, C.E., PeñaCastro, J. M., Fernández-Luqueño, F. & de la
Rosa-Álvarez, M. (2020). Use of
nanotechnology for the bioremediation of
contaminants: A review, Processes, 8(7), 826.
DOI: 10.3390/pr8070826
-
Wang, C.Y., Zhu, G.M., Chen, Z.Y. & Lin, Z.G. (2002).
The preparation of magnetite Fe3O4 and its
morphology control by a novel arcelectrodeposition method. Materials Research Bulletin, 37(15), 2525-2529. DOI:10.1016/S0025-5408(01)00787-5
-
Westra, L., Miller, P., Karr, J.R., Rees, W.E. &
Ulanowicz, R.E. (2000). Ecological integrity and
the aims of the Global Integrity Project. In:
Pimentel, D., Westra, L., Noss R.F., (Ed),
Ecological Integrity: Integrating Environment,
Conservation and Health, 19-41p., Island Press,
Washington, DC, USA.
-
Yusefi, M., Shameli, K., Rasit, A.R., Pang, S.W. &
Teow, S.Y. (2020). Evaluating anticancer activity
of plant-mediated synthesized iron oxide
nanoparticles using Punica granatum fruit peel
extract. Journal of Molecular Structure, 1204.
DOI: 10.1016/j.molstruc.2019.127539.