Research Article
BibTex RIS Cite

Amasya'da (Türkiye) Otoyol -Kent Gradyanındaki Toprak ve Euphorbia rigida türünde Ağır Metal Birikimi ve Biyomonitörlük Potansiyelinin Değerlendirilmesi

Year 2025, Volume: 10 Issue: 6, 923 - 931, 30.11.2025
https://doi.org/10.35229/jaes.1777922

Abstract

Trafik, özellikle Pb, Cd, Zn, Cu ve Cr gibi ağır metallerin başlıca kaynağı olup, bu elementlerin toprak ve bitkilerde birikimi ekosistem sağlığı ve insan sağlığı açısından ciddi risk oluşturmaktadır. Bu nedenle, trafik kaynaklı kirliliğin düzenli izlenmesi için güvenilir biyomonitör türlerin kullanımı büyük önem taşımaktadır. Bu çalışmada, Amasya’da trafik ve kentsel baskıyı temsil eden altı lokalitede (otoyol kenarı, şehir içi, 300 m, 500 m, 1000 m, kontrol) toprak ve Euphorbia rigida bireylerinde ağır metal birikimini ve türün biyomonitörlük potansiyeli araştırılmıştır. ICP-OES analizleriyle Cd, Cr, Cu, Pb ve Zn ölçülmüş; toprakta Jeo-birikim İndeksi (Igeo) ve Zenginleşme Faktörü (EF), bitkide ise biyokonsantrasyon Faktörü (BCF) ve Transfer Faktörü (TF) hesaplanmıştır. Zn ve Cd trafiğe mesafeyle azalırken, Cu, Cr ve Pb değerleri şehir içinde en yüksek bulunmuştur. Toprak analizlerinde, Cd (oto yol kenarında Igeo=1.813) orta derecede antropojenik kirlenmeye işaret etmiş; Zn (EF = 3.814) ve Pb (EF = 3.357) ise kent ve yol kenarlarında önemli ölçüde zenginleşme göstermiştir. Bitki dokularında birikim sırası Zn > Pb > Cu > Cr > Cd şeklinde gerçekleşmiştir. E.rigida, tüm lokalitelerde Zn için BCF > 1 değeriyle hiperakümülatör davranış sergilemiş, en yüksek konsantrasyon yıkanmış köklerde 573.90 mg kg⁻¹ olarak ölçülerek toksisite üst sınırını aşmıştır. Pb ve Cd için ise TF ≤ 1 olması, metali köklerinde tutarak fitostabilizasyon eğilimine işaret etmiştir. Sonuçlar, E. rigida’nın özellikle Zn ve kısmen Pb kirliliğinde etkin bir biyomonitör olduğunu, yol ve kentsel alanlarda düzenli izleme için kullanılabileceğini ortaya koymaktadır.

Ethical Statement

Bu çalışma insan katılımcıları veya deney hayvanlarını içermemektedir. Bitki ve toprak örnekleri ilgili mevzuata uygun olarak ve doğaya zarar vermeden toplanmıştır.

Supporting Institution

Amasya Üniversitesi

Project Number

FMB-BAP 18-0310

Thanks

Amasya Üniversitesi BAP (FMB-BAP 18-0310) desteğine teşekkür ederim.

References

  • Abderrahmane, B., Naima, B., Mansouri, T., & Merdas, A. (2021). Influence of highway traffic on contamination of roadside soil with heavy metals. Civil Engineering Journal, 7(8), 1459- 1471.
  • Alaribe, F., & Agamuthu, P. (2015). Evaluation of plant wetting potentials of Lantana camara in Pb affected soil with organic waste additives. Ecological Engineering, 83, 513-520.
  • Allaway, W.H. (1968). Agronomic controls over the environmental cycling of trace elements. Advances in Agronomy, 20, 235-274.
  • Allen, B.L., & Hajek, B.F. (1989). Mineral occurrence in soil environments. In Minerals in Soil Environments (2nd ed., pp. 199-278). SSSA.
  • Alloway, B.J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Springer.
  • Aslantürk, Ö.S., Yılmaz, E.Ş., Aşkın Çelik, T., & Güzel, Y. (2021). Evaluation of the antioxidant and cytotoxic potency of Euphorbia rigida and Arbutus andrachne methanol extracts in human hepatocellular carcinoma cell lines in vitro. Beni- Suef University Journal of Basic and Applied Sciences, 10(1), 51.
  • Badr, N., Fawzy, M., & Al-Qahtani, K.M. (2012). Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal, 16 (9), 1292-1301.
  • Barthwal, J., Nair, S., & Kakkar, P. (2008). Heavy metal accumulation in medicinal plants collected from environmentally different sites. Biomedical and Environmental Sciences, 21(4), 319-324.
  • Battaloğlu, R., Candar, S., Yalçın, M., & Yalçın, F. (2013). Component analysis and determination of heavy metal accumulation in Euphorbia macroclada Boiss (Niğde, Turkey). Asian Journal of Chemistry, 25(15), 8349-8352.
  • Berti, W.R., & Cunningham, S.D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 71- 88). Wiley.
  • Buat-Ménard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399-411.
  • Carlosena, A., Andrade, J.M., Tomás, X., Fernández, E., & Prada, D. (1999). Classification of edible vegetables affected by different traffic intensities using potential curves. Talanta, 48(4), 795-802.
  • Chen, T., Zheng, Y., Lei, M., Huang, Z., Wu, H., Chen, H., Fan, K., Wu, X., & Tian, Q. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542-551.
  • Conti, M.E., & Cecchetti, G. (2001). Biological monitoring: Lichens as bioindicators of air pollution assessment-A review. Environmental Pollution, 114(3), 471-492.
  • Cüce, H., Baltacı, H., & Başak, S. (2022). Integrated spatial distribution and multivariate statistical analysis for assessing sediment quality and ecological risks in Ömerli Dam (Istanbul, Turkey). Water, Air, & Soil Pollution, 233, 420.
  • Environmental Status Report: Çevre Durum Raporu. (2011). Amasya ili çevre durum raporu. T.C. Çevre ve Şehircilik Bakanlığı.
  • Galal, T.M., & Shehata, H.S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244-251.
  • Gerçel, Ö., & Gerçel, H.F. (2007). Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of E. rigida. Chemical Engineering Journal, 132(13), 289- 297.
  • Horn, J.W., van Ee, B.W., Morawetz, J.J., Riina, R., Steinmann, V.W., Berry, P.E., & Wurdack, K.J. (2012). Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Molecular Phylogenetics and Evolution, 6t3(2), 305-326.
  • Hulskotte, J.H.J., Denier van der Gon, H.A.C., Visschedijk, A.J.H., & Schaap, M. (2007). Brake wear from vehicles as an important source of diffuse copper pollution. Water Science and Technology, 56(1), 223-231.
  • İpek Tanyıldız, A., Kılıç, D.D., & Sürmen, B. (2022). Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes. Anatolian Journal of Botany, 6(1), 13-17.
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press.
  • Kabata-Pendias, A., & Pendias, H. (1989). Trace elements in the soil and plants. CRC Press.
  • Kamani, H., Mahvi, A.H., Seyedsalehi, M., Jaafari, J., Hoseini, M., Safari, G.H., Dalvand, A., Aslani, H., Mirzaei, N., & Ashrafi, S.D. (2017). Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran. International Journal of Environmental Science and Technology, 14, 2675-2682.
  • Kılıç, D.D., & Ortakçı, G. (2021). Heavy metal accumulations in some terrestrial endemic and non-endemic plants in mine sites (Elazığ/Turkey). Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(1), 126-136.
  • Kılıç, D.D., Sürmen, B., Kutbay, H.G., & Tuna, E.E. (2019). Doğal olarak yayılış gösteren Lepidium draba L. türünün fitoremediasyon yönteminde kullanılabilirliğinin araştırılması. Avrupa Bilim ve Teknoloji Dergisi, 17, 491-499.
  • Kilic, M., Ozsin, G., Apaydin-Varol, E., & Putun, A.E. (2017). Biosorption behaviour of an arid land plant, E. rigida, towards heavy metals: Equilibrium, kinetic and thermodynamic studies. Hittite Journal of Science and Engineering, 4(2), 105-115.
  • Kumar, A., Dadhwal, M., Mukherjee, G., Srivastava, A., Gupta, S., & Ahuja, V. (2024). Phytoremediation: Sustainable approach for heavy metal pollution. Scientifica, 2024(1), 3909400.
  • Ladislas, S., El-Mufleh, A., Gerente, C., Chazarenc, F., Andres, Y., & Bechet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, and Soil Pollution, 223, 877-888.
  • Li, X., & Liu, P.S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361-1368.
  • Magozwi, D.K., Dinala, M., Mokwana, N., Siwe- Noundou, X., Krause, R.W., Sonopo, M., …, & Tembu, V.J. (2021). Flavonoids from the genus Euphorbia: Isolation, structure, pharmacological activities and structure-activity relationships. Pharmaceuticals, 14(5), 428.
  • Markert, B. (1993). Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. VCH.
  • Markert, B.A., Breure, A.M., & Zechmeister, H.G. (2003). Definitions, strategies and principles for bioindication/biomonitoring of the environment. In Trace Metals and Other Contaminants in the Environment, 6 , 6-39. Elsevier.
  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. GeoJournal, 2, 108- 118.
  • Nagajyoti, P.C., Lee, K.D., & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199-216.
  • Oubohssaine, M., & Dahmani, I. (2024). Phytoremediation: Harnessing plant power and innovative technologies for effective soil remediation. Plant Stress, 14, 100578.
  • Özay, C., & Mammadov, R. (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 68–77.
  • Öztürk, M., Yücel, E., Gücel, S., Sakçali, S., & Aksoy, A. (2008). Plants as biomonitors of trace elements pollution in soil. In Trace Elements as Contaminants and Nutrients. 721-742. Wiley.
  • Padmavathiamma, P.K., & Li, L.Y. (2007). Phytoremediation technology: Hyperaccumulation of metals in plants. Water, Air, and Soil Pollution, 184(1-4), 105-126. DOI: 10.1007/s11270-007-9401-5
  • Pehlivan, M., Yayla, F., & Akgül, H. (2013). Changes of some heavy metals of E. rigida Bieb. (Euphorbiaceae) and its growth habitat along an altitude gradient in Gaziantep (Turkey). Fresenius Environmental Bulletin, 22(9a), 2676-2681.
  • Ray, J.G., & George, R. (2010). Zn in tolerant roadside plants in relation to the metal in the soils in South India. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(5), 548-559.
  • Ross, S. M. (1994). Sources and forms of potentially toxic metals in soil–plant systems. In S. M. Ross (Ed.), Toxic metals in soil-plant systems (pp. 3-25). John Wiley.
  • Sayo, S., Kiratu, J.M., & Nyamato, G.S. (2020). Heavy metal concentrations in soil and vegetables irrigated with sewage effluent: A case study of Embu sewage treatment plant, Kenya. Scientific African, 8, e00337.
  • Shaw, B.P., Sahu, S.K., & Mishra, R.K. (2004). Heavy metal-induced oxidative damage in terrestrial plants. In Heavy Metal Stress in Plants-From Biomolecules to Ecosystems (84-126). Springer.
  • Shen, Z., Chen, J., & Wu, H. (2022). Cadmium uptake and toxicity in plants: Physiological mechanisms and remediation strategies. Ecotoxicology and Environmental Safety, 233, 113317.
  • Sulaiman, F.R., & Hamzah, H.A. (2018). Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecological Processes, 7, 28.
  • Taghavi, S.N., Kamani, H., Dehghani, M.H., Nabizadeh, R., Afshari, N., & Mahvi, A.H. (2019). Assessment of heavy metals in street dusts of Tehran using enrichment factor and geo- accumulation index. Health Scope, 8(1), e57879.
  • Temizer, İ.K., Türkmen, Z., & Güder, A. (2019). Pollen analysis, antioxidant activities and determination of some metal contents of chestnut honeys from Bitlis province (Turkey). Global NEST Journal, 21(4), 461-468.
  • Toprak Kirliliğinin Kontrolü Yönetmeliği. (2001). (10 Aralık 2001). Resmî Gazete, 24609 (Ek-I).
  • Tuna, A.L., Kılıç, D.D., Kutbay, H.G., Sürmen, B., & Doğan, A. (2022). Heavy metal accumulation and potential ecological risk assessment of some Brassicaceae species growing under traffic and urban pressure in Amasya, Turkey. Journal of Agricultural Science and Technology, 24(1), 169- 181.
  • Vardar, Ç., Başaran, E., Duman-Cansaran, D., & Aras, S. (2014). Air-quality biomonitoring: Assessment of genotoxicity of air pollution in Kayseri (Central Anatolia) by lichens and AFLP markers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 759, 43-50.
  • Yener, İ., Temel, H., Tokul-Olmez, O., Fırat, M., Oral, E. V., Akdeniz, M., …, & Ertaş, A. (2019). Trace element analysis by ICP-MS and chemometric approach in some Euphorbia species: Potential to become a biomonitor. ranian Journal of Pharmaceutical Research, 18(4), 1704-1717.
  • Yücel, E., Edirnelioğlu, E., & Yücel, M. (2014). Orta- Batı Anadolu geçiş bölgesindeki ormanlarda trafik kaynaklı kadmiyum (Cd+2) kirliliğinin belirlenmesi. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 14(1), 48-68.
  • Zayed, A.M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139-156.
  • Zgłobicki, W., Telecka, M., Skupiński, S., & Kaszubkiewicz, J. (2019). Assessment of short- term changes in street dust pollution with heavy metals in Lublin (E Poland): Levels, sources and risks. International Journal of Environmental Research and Public Health, 16(22), 4492.

Assessment of Heavy Metal Accumulation in Soils and Euphorbia rigida Along a Roadside–Urban Gradient in Amasya (Türkiye) and Evaluation of the Species’ Biomonitoring Potential

Year 2025, Volume: 10 Issue: 6, 923 - 931, 30.11.2025
https://doi.org/10.35229/jaes.1777922

Abstract

Traffic is a major source of heavy metals, particularly Pb, Cd, Zn, Cu, and Cr, and the accumulation of these elements in soil and plants poses a serious risk to ecosystem health and human health. Therefore, the use of reliable biomonitor species for the regular monitoring of traffic-related pollution is of great importance. In this study, heavy metal accumulation in soil and Euphorbia rigida individuals and the species' biomonitoring potential were investigated at six locations (motorway edge, city centre, 300 m, 500 m, 1000 m, control) representing traffic and urban pressure in Amasya. Cd, Cr, Cu, Pb, and Zn were measured using ICP-OES analysis; the Geo-accumulation Index (Igeo) and Enrichment Factor (EF) were calculated for soil, while the Bioconcentration Factor (BCF) and Transfer Factor (TF) were calculated for plants. Zn and Cd decreased with distance from traffic, while Cu, Cr, and Pb values were highest within the city. Soil analyses indicated moderate anthropogenic contamination for Cd (Igeo = 1.813 at the roadside); Zn (EF = 3.814) and Pb (EF = 3.357) showed significant enrichment in the city and at the roadside. The order of accumulation in plant tissues was Zn > Pb > Cu > Cr > Cd. E. rigida exhibited hyperaccumulator behaviour for Zn with a BCF > 1 value in all localities, with the highest concentration measured in washed roots at 573.90 mg kg⁻¹ exceeding the toxicity threshold. For Pb and Cd, TF ≤ 1 indicated a tendency towards phytostabilisation by retaining the metal in its roots. The results confirm that E. rigida is an effective biomonitor, particularly for Zn and, to a lesser extent, Pb contamination.

Ethical Statement

This study does not involve human participants or experimental animals. Plant and soil samples were collected in accordance with the relevant regulations and without causing harm to nature.

Supporting Institution

Amasya Universty

Project Number

FMB-BAP 18-0310

Thanks

I thank Amasya University BAP (FMB-BAP 18-0310) for its support.

References

  • Abderrahmane, B., Naima, B., Mansouri, T., & Merdas, A. (2021). Influence of highway traffic on contamination of roadside soil with heavy metals. Civil Engineering Journal, 7(8), 1459- 1471.
  • Alaribe, F., & Agamuthu, P. (2015). Evaluation of plant wetting potentials of Lantana camara in Pb affected soil with organic waste additives. Ecological Engineering, 83, 513-520.
  • Allaway, W.H. (1968). Agronomic controls over the environmental cycling of trace elements. Advances in Agronomy, 20, 235-274.
  • Allen, B.L., & Hajek, B.F. (1989). Mineral occurrence in soil environments. In Minerals in Soil Environments (2nd ed., pp. 199-278). SSSA.
  • Alloway, B.J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (3rd ed.). Springer.
  • Aslantürk, Ö.S., Yılmaz, E.Ş., Aşkın Çelik, T., & Güzel, Y. (2021). Evaluation of the antioxidant and cytotoxic potency of Euphorbia rigida and Arbutus andrachne methanol extracts in human hepatocellular carcinoma cell lines in vitro. Beni- Suef University Journal of Basic and Applied Sciences, 10(1), 51.
  • Badr, N., Fawzy, M., & Al-Qahtani, K.M. (2012). Phytoremediation: An ecological solution to heavy-metal-polluted soil and evaluation of plant removal ability. World Applied Sciences Journal, 16 (9), 1292-1301.
  • Barthwal, J., Nair, S., & Kakkar, P. (2008). Heavy metal accumulation in medicinal plants collected from environmentally different sites. Biomedical and Environmental Sciences, 21(4), 319-324.
  • Battaloğlu, R., Candar, S., Yalçın, M., & Yalçın, F. (2013). Component analysis and determination of heavy metal accumulation in Euphorbia macroclada Boiss (Niğde, Turkey). Asian Journal of Chemistry, 25(15), 8349-8352.
  • Berti, W.R., & Cunningham, S.D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 71- 88). Wiley.
  • Buat-Ménard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399-411.
  • Carlosena, A., Andrade, J.M., Tomás, X., Fernández, E., & Prada, D. (1999). Classification of edible vegetables affected by different traffic intensities using potential curves. Talanta, 48(4), 795-802.
  • Chen, T., Zheng, Y., Lei, M., Huang, Z., Wu, H., Chen, H., Fan, K., Wu, X., & Tian, Q. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542-551.
  • Conti, M.E., & Cecchetti, G. (2001). Biological monitoring: Lichens as bioindicators of air pollution assessment-A review. Environmental Pollution, 114(3), 471-492.
  • Cüce, H., Baltacı, H., & Başak, S. (2022). Integrated spatial distribution and multivariate statistical analysis for assessing sediment quality and ecological risks in Ömerli Dam (Istanbul, Turkey). Water, Air, & Soil Pollution, 233, 420.
  • Environmental Status Report: Çevre Durum Raporu. (2011). Amasya ili çevre durum raporu. T.C. Çevre ve Şehircilik Bakanlığı.
  • Galal, T.M., & Shehata, H.S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244-251.
  • Gerçel, Ö., & Gerçel, H.F. (2007). Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of E. rigida. Chemical Engineering Journal, 132(13), 289- 297.
  • Horn, J.W., van Ee, B.W., Morawetz, J.J., Riina, R., Steinmann, V.W., Berry, P.E., & Wurdack, K.J. (2012). Phylogenetics and the evolution of major structural characters in the giant genus Euphorbia L. (Euphorbiaceae). Molecular Phylogenetics and Evolution, 6t3(2), 305-326.
  • Hulskotte, J.H.J., Denier van der Gon, H.A.C., Visschedijk, A.J.H., & Schaap, M. (2007). Brake wear from vehicles as an important source of diffuse copper pollution. Water Science and Technology, 56(1), 223-231.
  • İpek Tanyıldız, A., Kılıç, D.D., & Sürmen, B. (2022). Phytoremediation efficiencies of Brassica napus and Chenopodium quinoa in soils contaminated with Pb using chelator complexes. Anatolian Journal of Botany, 6(1), 13-17.
  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press.
  • Kabata-Pendias, A., & Pendias, H. (1989). Trace elements in the soil and plants. CRC Press.
  • Kamani, H., Mahvi, A.H., Seyedsalehi, M., Jaafari, J., Hoseini, M., Safari, G.H., Dalvand, A., Aslani, H., Mirzaei, N., & Ashrafi, S.D. (2017). Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran. International Journal of Environmental Science and Technology, 14, 2675-2682.
  • Kılıç, D.D., & Ortakçı, G. (2021). Heavy metal accumulations in some terrestrial endemic and non-endemic plants in mine sites (Elazığ/Turkey). Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 7(1), 126-136.
  • Kılıç, D.D., Sürmen, B., Kutbay, H.G., & Tuna, E.E. (2019). Doğal olarak yayılış gösteren Lepidium draba L. türünün fitoremediasyon yönteminde kullanılabilirliğinin araştırılması. Avrupa Bilim ve Teknoloji Dergisi, 17, 491-499.
  • Kilic, M., Ozsin, G., Apaydin-Varol, E., & Putun, A.E. (2017). Biosorption behaviour of an arid land plant, E. rigida, towards heavy metals: Equilibrium, kinetic and thermodynamic studies. Hittite Journal of Science and Engineering, 4(2), 105-115.
  • Kumar, A., Dadhwal, M., Mukherjee, G., Srivastava, A., Gupta, S., & Ahuja, V. (2024). Phytoremediation: Sustainable approach for heavy metal pollution. Scientifica, 2024(1), 3909400.
  • Ladislas, S., El-Mufleh, A., Gerente, C., Chazarenc, F., Andres, Y., & Bechet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, and Soil Pollution, 223, 877-888.
  • Li, X., & Liu, P.S. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361-1368.
  • Magozwi, D.K., Dinala, M., Mokwana, N., Siwe- Noundou, X., Krause, R.W., Sonopo, M., …, & Tembu, V.J. (2021). Flavonoids from the genus Euphorbia: Isolation, structure, pharmacological activities and structure-activity relationships. Pharmaceuticals, 14(5), 428.
  • Markert, B. (1993). Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. VCH.
  • Markert, B.A., Breure, A.M., & Zechmeister, H.G. (2003). Definitions, strategies and principles for bioindication/biomonitoring of the environment. In Trace Metals and Other Contaminants in the Environment, 6 , 6-39. Elsevier.
  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. GeoJournal, 2, 108- 118.
  • Nagajyoti, P.C., Lee, K.D., & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199-216.
  • Oubohssaine, M., & Dahmani, I. (2024). Phytoremediation: Harnessing plant power and innovative technologies for effective soil remediation. Plant Stress, 14, 100578.
  • Özay, C., & Mammadov, R. (2013). Ağır metaller ve süs bitkilerinin fitoremediasyonda kullanılabilirliği. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 68–77.
  • Öztürk, M., Yücel, E., Gücel, S., Sakçali, S., & Aksoy, A. (2008). Plants as biomonitors of trace elements pollution in soil. In Trace Elements as Contaminants and Nutrients. 721-742. Wiley.
  • Padmavathiamma, P.K., & Li, L.Y. (2007). Phytoremediation technology: Hyperaccumulation of metals in plants. Water, Air, and Soil Pollution, 184(1-4), 105-126. DOI: 10.1007/s11270-007-9401-5
  • Pehlivan, M., Yayla, F., & Akgül, H. (2013). Changes of some heavy metals of E. rigida Bieb. (Euphorbiaceae) and its growth habitat along an altitude gradient in Gaziantep (Turkey). Fresenius Environmental Bulletin, 22(9a), 2676-2681.
  • Ray, J.G., & George, R. (2010). Zn in tolerant roadside plants in relation to the metal in the soils in South India. American-Eurasian Journal of Agricultural & Environmental Sciences, 9(5), 548-559.
  • Ross, S. M. (1994). Sources and forms of potentially toxic metals in soil–plant systems. In S. M. Ross (Ed.), Toxic metals in soil-plant systems (pp. 3-25). John Wiley.
  • Sayo, S., Kiratu, J.M., & Nyamato, G.S. (2020). Heavy metal concentrations in soil and vegetables irrigated with sewage effluent: A case study of Embu sewage treatment plant, Kenya. Scientific African, 8, e00337.
  • Shaw, B.P., Sahu, S.K., & Mishra, R.K. (2004). Heavy metal-induced oxidative damage in terrestrial plants. In Heavy Metal Stress in Plants-From Biomolecules to Ecosystems (84-126). Springer.
  • Shen, Z., Chen, J., & Wu, H. (2022). Cadmium uptake and toxicity in plants: Physiological mechanisms and remediation strategies. Ecotoxicology and Environmental Safety, 233, 113317.
  • Sulaiman, F.R., & Hamzah, H.A. (2018). Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecological Processes, 7, 28.
  • Taghavi, S.N., Kamani, H., Dehghani, M.H., Nabizadeh, R., Afshari, N., & Mahvi, A.H. (2019). Assessment of heavy metals in street dusts of Tehran using enrichment factor and geo- accumulation index. Health Scope, 8(1), e57879.
  • Temizer, İ.K., Türkmen, Z., & Güder, A. (2019). Pollen analysis, antioxidant activities and determination of some metal contents of chestnut honeys from Bitlis province (Turkey). Global NEST Journal, 21(4), 461-468.
  • Toprak Kirliliğinin Kontrolü Yönetmeliği. (2001). (10 Aralık 2001). Resmî Gazete, 24609 (Ek-I).
  • Tuna, A.L., Kılıç, D.D., Kutbay, H.G., Sürmen, B., & Doğan, A. (2022). Heavy metal accumulation and potential ecological risk assessment of some Brassicaceae species growing under traffic and urban pressure in Amasya, Turkey. Journal of Agricultural Science and Technology, 24(1), 169- 181.
  • Vardar, Ç., Başaran, E., Duman-Cansaran, D., & Aras, S. (2014). Air-quality biomonitoring: Assessment of genotoxicity of air pollution in Kayseri (Central Anatolia) by lichens and AFLP markers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 759, 43-50.
  • Yener, İ., Temel, H., Tokul-Olmez, O., Fırat, M., Oral, E. V., Akdeniz, M., …, & Ertaş, A. (2019). Trace element analysis by ICP-MS and chemometric approach in some Euphorbia species: Potential to become a biomonitor. ranian Journal of Pharmaceutical Research, 18(4), 1704-1717.
  • Yücel, E., Edirnelioğlu, E., & Yücel, M. (2014). Orta- Batı Anadolu geçiş bölgesindeki ormanlarda trafik kaynaklı kadmiyum (Cd+2) kirliliğinin belirlenmesi. Kastamonu Üniversitesi Orman Fakültesi Dergisi, 14(1), 48-68.
  • Zayed, A.M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139-156.
  • Zgłobicki, W., Telecka, M., Skupiński, S., & Kaszubkiewicz, J. (2019). Assessment of short- term changes in street dust pollution with heavy metals in Lublin (E Poland): Levels, sources and risks. International Journal of Environmental Research and Public Health, 16(22), 4492.
There are 55 citations in total.

Details

Primary Language English
Subjects Ecology (Other), Pollution and Contamination (Other)
Journal Section Research Article
Authors

Dudu Duygu Kılıç 0000-0001-6425-6062

Project Number FMB-BAP 18-0310
Submission Date September 4, 2025
Acceptance Date October 6, 2025
Early Pub Date November 30, 2025
Publication Date November 30, 2025
Published in Issue Year 2025 Volume: 10 Issue: 6

Cite

APA Kılıç, D. D. (2025). Assessment of Heavy Metal Accumulation in Soils and Euphorbia rigida Along a Roadside–Urban Gradient in Amasya (Türkiye) and Evaluation of the Species’ Biomonitoring Potential. Journal of Anatolian Environmental and Animal Sciences, 10(6), 923-931. https://doi.org/10.35229/jaes.1777922


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS