Research Article
BibTex RIS Cite

Antropojenik İklim Değişikliğinin Balıkçılık ve Su Ürünleri Üzerine Etki ve Yönetim Stratejilerine Genel Bir Bakış

Year 2020, Volume: 5 Issue: 3, 295 - 303, 30.09.2020
https://doi.org/10.35229/jaes.718925

Abstract

İklim, yeryüzünün biyolojik varlığının yaşamsal bir değeridir. Biyolojik yaşamı doğrudan ve dolaylı olarak etkileyen antropojenik etkilerin iklim üzerinde yarattığı değişimler dünya için bir tehdit oluşturmaktadır. Dünya nüfusundaki artış ve gelişen sanayiden kaynaklı antropejenik kökenli etkiler iklim değişikliği sürecini hızlandırmaktadır. Paris İklim Konferansı’nda kabul edilen 1,5 °C küresel sıcaklık artış kriteri ve sera gazı emisyonlarından/salınımlarından kaynaklı CO2 miktarındaki artış antropejenik iklim değişikliğinin izlenmesinde önemli iki kriterdir. Antropojenik çevresel atıklarla birlikte atmosferde yaşanan antropojenik iklim değişikliğinin etkileri sucul havzalara ulaşarak ekosistemler üzerinde değişimlere neden olmaktadır. İzlenmesi gereken en önemli kriterlerden sıcaklık artışı sucul canlıların besinlerini, göç ve habitatlarını etkilemektedir. Diğer önemli kriter CO2 artışı da sucul ekosistemlerin pH’sını asitliğe dönüştürerek canlıların yaşam alanlarını etkilemektedir. Her ikisi de su stresini tetikleyerek balıkçılık ve yetiştiricilik koşullarında etkiler yaratmaktadır. Bu süreçlerin yarattığı etkilerin kabul edilebilir sınırları zorlayan baskıları artan dünya nüfusunun güvenli gıdaya ulaşmasını da etkilemektedir. Bu bağlamda, yerel ve ülke gözlem ve izleme lokasyonlarının desteklediği küresel ölçekli yönetim organizasyonlarıyla antropejenik baskıların azaltıldığı dünya iklim güvenliğinin sağlanması gerekmektedir. Bu çalışmada, antropojenik iklim değişikliğinin sucul ekosistemler üzerinde yarattığı baskılarının balıkçılık ve su ürünleri üzerine etkileri özetlenmiştir.

References

  • ABTD. (2020). Geleceğe Dair: Paris İklim Anlaşması. Avrupa Birliği Türkiye Delegasyonu, Ankara, Turkey. Erişim tarihi: 03 Ocak 2020, https://www.avrupa.info.tr/sites/default/files/2016-08/brochure_4_v2.pdf
  • ABB. (2019). Antalya’nın deniz ve kıyılarının iklim değişikliğine adaptasyonu projesi. Antalya Büyükşehir Belediyesi ve Türk Deniz Araştırmaları Vakfı. Proje Referans Numarası: TR2013/0327.05.01-02/072. Antalya Büyükşehir Belediyesi, Antalya, Türkiye. Erişim tarihi: 02 Ocak 2020, http://tudav.org/calismalar/iklim-degisikligi/antalyanin-deniz-ve-kiyilarinin-iklim-degisikligine-adaptasyonu/
  • Barange, M. & Perry, R.I. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, In: Cochrane, K., De Young, C., Soto, D. & Bahri, T. (Ed), Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture, 7-106p, FAO, Rome, IT.
  • Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F. (2018). Impacts of climate change on fisheries and aquaculture, synthesis of current knowledge, adaptation and mitigation options, FAO, Rome, IT, 628p.
  • Bilecenoğlu, M. (2018). Lionfish invasion and its management in the Mediterranean Sea, In: Hüseyinoğlu, M.F. & Öztürk, B. (Ed), Controlling the lionfish invasion in the eastern Mediterranean Sea, 1-9p, TUDAV, Istanbul, TR.
  • Chang, C.C., Lee, H.L. & Hsu, S.H. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A. (Ed), The potential impact of climate changeinduced sealevel rise on the global rice market and food security, 246-262p, FAO, Rome, IT.
  • Cochrane, K., De Young, C., Soto, D. & Bahri, T. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, FAO, Rome, IT, 212p.
  • Daw, T., Adger, W.N., Brown, K., & Badjeck, M.C. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, In: Cochrane, K., De Young, C., Soto, D., & Bahri, T. (Ed). Climate change and capture fisheries: potential impacts, adaptation and mitigation, 107-150p, FAO, Rome, IT.
  • De Silva, S.S. & Soto, D. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, In: Cochrane, K., De Young, C, Soto, D. & Bahri. T. (Ed), Climate change and aquaculture: potential impacts, adaptation and mitigation, 151-212p, FAO, Rome, IT.
  • Demircan, M. (2019). İklim değişikliği: sektörel iklim ürünleri ve coğrafi bilgi sistemi (CBS). 17. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25-27 Nisan 2019, Ankara, Türkiye.
  • Dimitriou, A.C., Chartosia, N., Hall-Spencer, J.M., Kleitou, P., Jimenez, C., Antoniou, C., Hadjioannou, L., Kletou, D. & Sfenthourakis, S. (2019). Genetic data suggest multiple ıntroductions of the lionfish (Pterois miles) into the Mediterranean Sea. Diversity, 11(149), 1-12.
  • Dulčić, J. & Dragičević, B. (2019). Non-indigenous decapod crustaceans in the Adriatic waters: A short review. International Biodiverstiy & Ecology Sciences Symposium Proceeding (Bioeco2019), 26-28 September 2019, İstanbul, Türkiye, 349.
  • Elbehri, A., Elliott, J. & Wheeler, T. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A., Climate change, food security and trade: An overview of global assessments and policy insights, 1-27p, FAO, Rome, IT.
  • FAO (2015). The impact of disasters on agriculture and food security, The Food and Agriculture Organization of the United Nations, Rome, IT, 77p.
  • FAO. (2017). FAO’s work on climate change united nations climate change conference 2017. The Food and Agriculture Organization of the United Nations, Rome, Italy. Erişim tarihi: 05 Ocak 2020, http://www.fao.org/3/a-i8037e.pdf
  • FAO. (2020). Cultured Aquatic species information programme Agryrosomus regius (Asso, 1801). The Food and Agriculture Organization of the United Nations, Rome, Italy. Erişim tarihi: 08 Nisan 2020, http://www.fao.org/fishery/culturedspecies/Argyrosomus_regius/en
  • Galanidi, M., Turan, C., Öztürk, B. & Zenetos, A. (2019). Europen Union (EU) risk assessment of Plotosus lineatus (Thunberg, 1787); a summary and information update. Journal of the Black Sea/Mediterranean Environment, 25(2), 210-231.
  • Gazioğlu, C., Müftüoğlu, A.E., Demir, V., Aksu, A. & Okutan, V. (2015). Connection between ocean acidification and sound propagation International Journal of Environment and Geoinformatics, 2(2), 16-26.
  • Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock–A global assessment of emissions and mitigation opportunities, FAO, Rome, IT, 115p.
  • Gütte, C., Meek, S., Hansen, U. & Miliou, A. (2019). Adapted Seagrass Watch Protocol to evaluate Posidonia oceanica health, in the Eastern Aegean Sea. International Biodiverstiy & Ecology Sciences Symposium Proceeding (Bioeco2019), 26-28 September 2019, İstanbul, Türkiye, 275p.
  • Hay, C.C., Morrow, E., Kopp, R.E. & Mitrovica, J.X. (2015). Probabilistic reanalysis of twentieth- century sea-level rise. Nature, 517, 48-484.
  • Haunschild, R., Bornmann, L. & Marx, W. (2016). Climate change research in view of bibliometrics. PLoS ONE, 11(7), e0160393, 1-19p.
  • Hong, H., Karolyi, G.A. & Scheinkman, J.A. (2020). Climate Finance. The Review of Financial Studies, 33(3), 1011-1023.
  • Kaimuddin, A.H. (2016). Climate change impacts on fish species distribution. Approach using GIS, models and climate evolution scenario. Earth Sciences, Université de Bretagne occidentale-Brest, HAL https://tel.archives-ouvertes.fr/tel-01611802 254p.
  • Khoshnevis, Y.S. & Bahram, S. (2010). The effects of climate change on aquaculture. International journal of environmental science and development, 1(5), 378-382.
  • Kistler, A. & Muffett, C. (2019). Plastic & climate: The hidden costs of a plastic planet. https://www.ciel.org/wp-content/uploads/2019/05/Plastic-and-Climate-FINAL-2019.pdf (02 Ocak 2020).
  • Köse, İ. (2018). İklim değişikliği müzakereleri: Türkiye’nin Paris Anlaşması’nı imza süreci. Ege Stratejik Araştırmalar Dergisi, 9(1), 55-81.
  • Lioubimtseva, E., Dronin, N., Kirilenko. (2015). . Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A., Grain production trends in the Russian Federation, Ukraine and Kazakhstan in the context of climate change and international trade, 210-244p, FAO, Rome, IT.
  • Marinelli, M. (2019). Climate induced changes in population dynamics in the Mediterranean Sea. International Biodiverstiy & Ecology Sciences Symposium Proceeding (Bioeco2019), 26-28 September 2019, İstanbul, Türkiye, 23p.
  • Mazlum, S.C. (2019). TC Çevre ve Şehircilik Bakanlığı Çevre Yönetimi Genel Müdürlüğü, iklim değişikliği alanında ortak çabaların desteklenmesi projesi (iklimİN), iklim değişikliği eğitim modülleri serisi 2, küresel iklim politikaları. http://www.iklimin.org/moduller/kureselpolitikalarmodulu.pdf (03 Ocak 2020).
  • Morber, J. (2019). As the planet warms, unusual crops could become clımate savıors-but only ıf we’re wıllıng to eat them.https://ensia.com/features/climate-change-resilient-crops-plants-meat/ (10 Nisan 2020).
  • Muir, J.F. (2014). Fuel and energy use in the fisheries sector-approaches, inventories and strategic implications. FAO, Rome, IT, 94p.
  • Reid, G.K., Gurney-Smith, H.J., Marcogliese, D.J., Knowler, D., Benfey, T., Garber, A.F., Forster, I., Chopin, T., Brewer-Dalton, K., Moccia, R.D., Flaherty, M., Smith, C.T. & De Silva, S. (2019). Climate change and aquaculture: considering biological response and resources. Aquacult Environ Interact, 11, 569-602.
  • Ribas, X.C. (2019). Ecosystem modelling in the Eastern Mediterranean Sea: the cumulative impact of alien species, fishing and climate change on the Israeli marine ecosystem, Universidad Politécnica de Cataluña (UPC), Bercolena, Spain, 276p.
  • Rotter, R.J. & Hohn J. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A. (Ed), An overview of climate change impact on crop production and its variability in Europe, related uncertainties and research challenges, 106-145p, FAO, Rome, IT.
  • Shelton, C. (2014). Climate change adaptation in fisheries and aquaculture compilation of initial examples, FAO, Rome, IT, 34p.
  • Stocker, T.F., Qin D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, USA, 1535p.
  • MGM. 2020a. MGM DenizSuyu. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/Haberler/2018/MGMDenizSuyu.pdf
  • MGM. (2020b). Akdeniz-DenizSuyu-Sicakligi-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Akdeniz-DenizSuyu-Sicakligi-Analizi.pdf
  • MGM. (2020c). Ege-DenizSuyu-Sicakliği-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Ege-DenizSuyu-Sicakligi-Analizi.pdf
  • MGM. (2020d). Marmara-DenizSuyu-Sicakliği-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Marmara-DenizSuyu-Sicakligi-Analizi.pdf
  • MGM. (2020e). Karadeniz-DenizSuyu-Sicakliği-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020. https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Karadeniz-DenizSuyu-Sicakligi-Analizi.pdf
  • Öztürk, B., Turan, C., Özsoy, E., Öztürk, H., Güven, K.C. & Algan, N. (2017). 2017 yılı Türkiye Denizleri raporu, TÜDAV, İstanbul, Türkiye, 44s.
  • Thomas, T. & Rosegrant, M. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A. (Ed), Climate change impact on key crops in Africa: Using crop models and general equilibrium models to bound the prediction, 146-175p, FAO, Rome, IT.
  • Terzi, G. (2008). Deniz ürelerine bağlı zehirlenmeler ve etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 65(1), 51-60.
  • Turan, C., Erguden, D., & Gürlek, M. (2016). Climate change and biodiversity effects in Turkish Seas. NESciences, 1(2), 15-24.
  • Turan, C., Gürle, M., Başusta, N., Uyan, A., Doğdu, S. & Karan, S. (2018). A checklist of the non-indigenous fishes in Turkish marine waters. NESciences, 3,(3), 333-358.
  • USGCRP. (2018). Impacts, risk, and adaptation in the United States: Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program, Washington, USA, 1515p.
  • Wheeler, T. (2015). Climate change impacts on food systems and implications for climate-compatible food policies, In: Elbehri, A. (Ed), Climate change and food systems: global assessments and implications for food security and trade, 314-336p, FAO, Rome, IT.
  • Werz, M. & Hoffman M. (2017). Climate change and migration in the Mediterranean: Challenges for the future. https://www.iemed.org/observatori/arees-danalisi/arxius-adjunts/anuari/med.2017/ IEMed_MedYearbook2017_ climate_ change_Werz_hoffman.pdf (07.04.2020).

An Overview of the Impact and Management Strategies of Anthropogenic Climate Change on Fisheries and Aquaculture

Year 2020, Volume: 5 Issue: 3, 295 - 303, 30.09.2020
https://doi.org/10.35229/jaes.718925

Abstract

Climate is a vital value of the biological existence of the Earth. The changes created by the anthropogenic effects that directly and indirectly affect biological life on the climate pose a threat to the world. The increase in the world population and the effects of anthropegenic origin from the developing industry accelerate the climate change process. The 1.5 °C global temperature rise criterion adopted at the Paris Climate Conference and the increase in the amount of CO2 from greenhouse gas emissions are two important criteria for monitoring anthropegenic climate change. The effects of anthropogenic climate change in the atmosphere along with anthropogenic environmental wastes reach aquatic basins and cause changes on ecosystems. Temperature increase, one of the most important criteria to be followed, affects the food, migration and habitats of aquatic organisms. Another important criterion is the increase in CO2 affects the living areas of living things by converting the pH of the aquatic ecosystems into acidity. Both create effects in fishing and aquaculture conditions by stimulating water stress. The pressures of the impacts of these processes that push the acceptable limits also affect the increasing world population's access to safe food. In this context, it is necessary to provide global climate security, in which anthropegenic pressures are reduced by global management organizations supported by local and country observation and monitoring locations. In this study, the effects of anthropogenic climate change pressures on aquatic ecosystems on fisheries and aquaculture are summarized.

References

  • ABTD. (2020). Geleceğe Dair: Paris İklim Anlaşması. Avrupa Birliği Türkiye Delegasyonu, Ankara, Turkey. Erişim tarihi: 03 Ocak 2020, https://www.avrupa.info.tr/sites/default/files/2016-08/brochure_4_v2.pdf
  • ABB. (2019). Antalya’nın deniz ve kıyılarının iklim değişikliğine adaptasyonu projesi. Antalya Büyükşehir Belediyesi ve Türk Deniz Araştırmaları Vakfı. Proje Referans Numarası: TR2013/0327.05.01-02/072. Antalya Büyükşehir Belediyesi, Antalya, Türkiye. Erişim tarihi: 02 Ocak 2020, http://tudav.org/calismalar/iklim-degisikligi/antalyanin-deniz-ve-kiyilarinin-iklim-degisikligine-adaptasyonu/
  • Barange, M. & Perry, R.I. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, In: Cochrane, K., De Young, C., Soto, D. & Bahri, T. (Ed), Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture, 7-106p, FAO, Rome, IT.
  • Barange, M., Bahri, T., Beveridge, M.C.M., Cochrane, K.L., Funge-Smith, S. & Poulain, F. (2018). Impacts of climate change on fisheries and aquaculture, synthesis of current knowledge, adaptation and mitigation options, FAO, Rome, IT, 628p.
  • Bilecenoğlu, M. (2018). Lionfish invasion and its management in the Mediterranean Sea, In: Hüseyinoğlu, M.F. & Öztürk, B. (Ed), Controlling the lionfish invasion in the eastern Mediterranean Sea, 1-9p, TUDAV, Istanbul, TR.
  • Chang, C.C., Lee, H.L. & Hsu, S.H. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A. (Ed), The potential impact of climate changeinduced sealevel rise on the global rice market and food security, 246-262p, FAO, Rome, IT.
  • Cochrane, K., De Young, C., Soto, D. & Bahri, T. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, FAO, Rome, IT, 212p.
  • Daw, T., Adger, W.N., Brown, K., & Badjeck, M.C. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, In: Cochrane, K., De Young, C., Soto, D., & Bahri, T. (Ed). Climate change and capture fisheries: potential impacts, adaptation and mitigation, 107-150p, FAO, Rome, IT.
  • De Silva, S.S. & Soto, D. (2009). Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, In: Cochrane, K., De Young, C, Soto, D. & Bahri. T. (Ed), Climate change and aquaculture: potential impacts, adaptation and mitigation, 151-212p, FAO, Rome, IT.
  • Demircan, M. (2019). İklim değişikliği: sektörel iklim ürünleri ve coğrafi bilgi sistemi (CBS). 17. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25-27 Nisan 2019, Ankara, Türkiye.
  • Dimitriou, A.C., Chartosia, N., Hall-Spencer, J.M., Kleitou, P., Jimenez, C., Antoniou, C., Hadjioannou, L., Kletou, D. & Sfenthourakis, S. (2019). Genetic data suggest multiple ıntroductions of the lionfish (Pterois miles) into the Mediterranean Sea. Diversity, 11(149), 1-12.
  • Dulčić, J. & Dragičević, B. (2019). Non-indigenous decapod crustaceans in the Adriatic waters: A short review. International Biodiverstiy & Ecology Sciences Symposium Proceeding (Bioeco2019), 26-28 September 2019, İstanbul, Türkiye, 349.
  • Elbehri, A., Elliott, J. & Wheeler, T. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A., Climate change, food security and trade: An overview of global assessments and policy insights, 1-27p, FAO, Rome, IT.
  • FAO (2015). The impact of disasters on agriculture and food security, The Food and Agriculture Organization of the United Nations, Rome, IT, 77p.
  • FAO. (2017). FAO’s work on climate change united nations climate change conference 2017. The Food and Agriculture Organization of the United Nations, Rome, Italy. Erişim tarihi: 05 Ocak 2020, http://www.fao.org/3/a-i8037e.pdf
  • FAO. (2020). Cultured Aquatic species information programme Agryrosomus regius (Asso, 1801). The Food and Agriculture Organization of the United Nations, Rome, Italy. Erişim tarihi: 08 Nisan 2020, http://www.fao.org/fishery/culturedspecies/Argyrosomus_regius/en
  • Galanidi, M., Turan, C., Öztürk, B. & Zenetos, A. (2019). Europen Union (EU) risk assessment of Plotosus lineatus (Thunberg, 1787); a summary and information update. Journal of the Black Sea/Mediterranean Environment, 25(2), 210-231.
  • Gazioğlu, C., Müftüoğlu, A.E., Demir, V., Aksu, A. & Okutan, V. (2015). Connection between ocean acidification and sound propagation International Journal of Environment and Geoinformatics, 2(2), 16-26.
  • Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock–A global assessment of emissions and mitigation opportunities, FAO, Rome, IT, 115p.
  • Gütte, C., Meek, S., Hansen, U. & Miliou, A. (2019). Adapted Seagrass Watch Protocol to evaluate Posidonia oceanica health, in the Eastern Aegean Sea. International Biodiverstiy & Ecology Sciences Symposium Proceeding (Bioeco2019), 26-28 September 2019, İstanbul, Türkiye, 275p.
  • Hay, C.C., Morrow, E., Kopp, R.E. & Mitrovica, J.X. (2015). Probabilistic reanalysis of twentieth- century sea-level rise. Nature, 517, 48-484.
  • Haunschild, R., Bornmann, L. & Marx, W. (2016). Climate change research in view of bibliometrics. PLoS ONE, 11(7), e0160393, 1-19p.
  • Hong, H., Karolyi, G.A. & Scheinkman, J.A. (2020). Climate Finance. The Review of Financial Studies, 33(3), 1011-1023.
  • Kaimuddin, A.H. (2016). Climate change impacts on fish species distribution. Approach using GIS, models and climate evolution scenario. Earth Sciences, Université de Bretagne occidentale-Brest, HAL https://tel.archives-ouvertes.fr/tel-01611802 254p.
  • Khoshnevis, Y.S. & Bahram, S. (2010). The effects of climate change on aquaculture. International journal of environmental science and development, 1(5), 378-382.
  • Kistler, A. & Muffett, C. (2019). Plastic & climate: The hidden costs of a plastic planet. https://www.ciel.org/wp-content/uploads/2019/05/Plastic-and-Climate-FINAL-2019.pdf (02 Ocak 2020).
  • Köse, İ. (2018). İklim değişikliği müzakereleri: Türkiye’nin Paris Anlaşması’nı imza süreci. Ege Stratejik Araştırmalar Dergisi, 9(1), 55-81.
  • Lioubimtseva, E., Dronin, N., Kirilenko. (2015). . Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A., Grain production trends in the Russian Federation, Ukraine and Kazakhstan in the context of climate change and international trade, 210-244p, FAO, Rome, IT.
  • Marinelli, M. (2019). Climate induced changes in population dynamics in the Mediterranean Sea. International Biodiverstiy & Ecology Sciences Symposium Proceeding (Bioeco2019), 26-28 September 2019, İstanbul, Türkiye, 23p.
  • Mazlum, S.C. (2019). TC Çevre ve Şehircilik Bakanlığı Çevre Yönetimi Genel Müdürlüğü, iklim değişikliği alanında ortak çabaların desteklenmesi projesi (iklimİN), iklim değişikliği eğitim modülleri serisi 2, küresel iklim politikaları. http://www.iklimin.org/moduller/kureselpolitikalarmodulu.pdf (03 Ocak 2020).
  • Morber, J. (2019). As the planet warms, unusual crops could become clımate savıors-but only ıf we’re wıllıng to eat them.https://ensia.com/features/climate-change-resilient-crops-plants-meat/ (10 Nisan 2020).
  • Muir, J.F. (2014). Fuel and energy use in the fisheries sector-approaches, inventories and strategic implications. FAO, Rome, IT, 94p.
  • Reid, G.K., Gurney-Smith, H.J., Marcogliese, D.J., Knowler, D., Benfey, T., Garber, A.F., Forster, I., Chopin, T., Brewer-Dalton, K., Moccia, R.D., Flaherty, M., Smith, C.T. & De Silva, S. (2019). Climate change and aquaculture: considering biological response and resources. Aquacult Environ Interact, 11, 569-602.
  • Ribas, X.C. (2019). Ecosystem modelling in the Eastern Mediterranean Sea: the cumulative impact of alien species, fishing and climate change on the Israeli marine ecosystem, Universidad Politécnica de Cataluña (UPC), Bercolena, Spain, 276p.
  • Rotter, R.J. & Hohn J. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A. (Ed), An overview of climate change impact on crop production and its variability in Europe, related uncertainties and research challenges, 106-145p, FAO, Rome, IT.
  • Shelton, C. (2014). Climate change adaptation in fisheries and aquaculture compilation of initial examples, FAO, Rome, IT, 34p.
  • Stocker, T.F., Qin D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, USA, 1535p.
  • MGM. 2020a. MGM DenizSuyu. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/Haberler/2018/MGMDenizSuyu.pdf
  • MGM. (2020b). Akdeniz-DenizSuyu-Sicakligi-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Akdeniz-DenizSuyu-Sicakligi-Analizi.pdf
  • MGM. (2020c). Ege-DenizSuyu-Sicakliği-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Ege-DenizSuyu-Sicakligi-Analizi.pdf
  • MGM. (2020d). Marmara-DenizSuyu-Sicakliği-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020, https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Marmara-DenizSuyu-Sicakligi-Analizi.pdf
  • MGM. (2020e). Karadeniz-DenizSuyu-Sicakliği-Analizi. TC Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü, Ankara, Turkey. Erişim tarihi: 02 Ocak 2020. https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Karadeniz-DenizSuyu-Sicakligi-Analizi.pdf
  • Öztürk, B., Turan, C., Özsoy, E., Öztürk, H., Güven, K.C. & Algan, N. (2017). 2017 yılı Türkiye Denizleri raporu, TÜDAV, İstanbul, Türkiye, 44s.
  • Thomas, T. & Rosegrant, M. (2015). Climate change and food systems: global assessments and implications for food security and trade, In: Elbehri, A. (Ed), Climate change impact on key crops in Africa: Using crop models and general equilibrium models to bound the prediction, 146-175p, FAO, Rome, IT.
  • Terzi, G. (2008). Deniz ürelerine bağlı zehirlenmeler ve etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi, 65(1), 51-60.
  • Turan, C., Erguden, D., & Gürlek, M. (2016). Climate change and biodiversity effects in Turkish Seas. NESciences, 1(2), 15-24.
  • Turan, C., Gürle, M., Başusta, N., Uyan, A., Doğdu, S. & Karan, S. (2018). A checklist of the non-indigenous fishes in Turkish marine waters. NESciences, 3,(3), 333-358.
  • USGCRP. (2018). Impacts, risk, and adaptation in the United States: Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program, Washington, USA, 1515p.
  • Wheeler, T. (2015). Climate change impacts on food systems and implications for climate-compatible food policies, In: Elbehri, A. (Ed), Climate change and food systems: global assessments and implications for food security and trade, 314-336p, FAO, Rome, IT.
  • Werz, M. & Hoffman M. (2017). Climate change and migration in the Mediterranean: Challenges for the future. https://www.iemed.org/observatori/arees-danalisi/arxius-adjunts/anuari/med.2017/ IEMed_MedYearbook2017_ climate_ change_Werz_hoffman.pdf (07.04.2020).
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gürkan Diken 0000-0002-3386-3676

Publication Date September 30, 2020
Submission Date April 12, 2020
Acceptance Date July 13, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Diken, G. (2020). Antropojenik İklim Değişikliğinin Balıkçılık ve Su Ürünleri Üzerine Etki ve Yönetim Stratejilerine Genel Bir Bakış. Journal of Anatolian Environmental and Animal Sciences, 5(3), 295-303. https://doi.org/10.35229/jaes.718925


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg