Research Article
BibTex RIS Cite

Fatty acid profiles of waste fish skins and potential use for crackers

Year 2020, Volume: 5 Issue: 4, 527 - 532, 31.12.2020
https://doi.org/10.35229/jaes.766584

Abstract

The aim of this study is to examine the fatty acid profiles of rainbow trout (G1), sea bream (G2) and sea bass (G3) obtained by cultivation and to measure the panelist perceptions of edible crackers obtained from these fish skins by sensory analysis. The fatty acid compositions of groups changed from 21.27- 24.59%, 41.43–45.18% and 28.06–29.48% for saturated (SFAs), monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs), respectively. The ratio of w6/w3 PUFAs was 1.27 in G1, 1.77 in G2 and 1.71 in G3. Atherogenicity (IA) and Thrombogenicity Index (IT) values ranged from 0.33 to 0.36 and from 0.26 to 0.31, respectively.

References

  • Bligh, E.C. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37,913-917.
  • Bouaziz, M., Bejaoui, S., Rabeh, I., Besbes, R., El, R., Cafsi, M. & Falcon, J. (2017). Impact of temperature on sea bass, Dicentrarchus labrax, retina: Fatty acid composition, expression of rhodopsin and enzymes of lipid and melatonin metabolism. Experimental Eye Research, 159, 87-97.
  • Chen, I.C., Chapman, F.A., Wei, C.I., Porteir, K.M. & O”Keefe, S.F. (1995). Differentiation of cultured and wild sturgeon (Acipencer oxyrinchus desotoi) based on fatty acid composition. Journal of Food Science, 60, 631-635.
  • Childs, M.T., King, I.B., Knopp, & R.H. (1990). Divergent lipoprotein responses to fish oils with various ratios of eicosapentaenoic and docosahexaenoic acids. The American Journal of Clinical Nutrition, 52, 632-639.
  • Conner, W.E. (2000). Importance of n-3 fatty acids in health and disease. The American Journal of Clinical Nutrition, 17,171S-175S.
  • Cui, L., Wang, S., Yang, X., Gao, L., Zheng, M., Wang, R., Qiao, L. & Xu, C. (2018). Fatty acids, polychlorinated dibenzo-p-dioxins and dibenzofurans, and dioxin-like polychlorinated biphenyls in paired muscle and skin from fish from the Bohai coast, China: Benefits and risks associated with fish consumption. Science of the Total Environment, 639, 952-960.
  • Erkan, N. & Özden, Ö. (2007). The changes of fatty acid and amino acid compositions in sea bream (Sparus aurata) during irradiation process. Radiation Physics and Chemistry, 76,1636-1641.
  • Fenton, W.S., Hibbeln, J. & Knable M. (2000). Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biological Psychiatry, 47,8-21.
  • Furnier, V., Destaillats, F., Juaneda, P., Dionisi, F., Lambelet, P., Sebedio, J.L. & Bordeaux, O. (2006). Thermal degradation of long-chain polyunsatured fatty acids during deodozation of fish oil. European Journal of Lipid Science and Technology, 108, 33-42.
  • Ghaeni, M., Ghahfarokhi, K. & Zaheri, L. (2013). Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in Leiognathusbindus and Upeneussulphureus. Journal of Marine Science: Research & Development, 3, 1.
  • Giudetti, A.M. & Cagnazzo, R. (2012). Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins & Other Lipid Mediators, 99,57-67.
  • HMSO UK. (1994). Nutritional aspects of cardiovascular disease (report on health and social subjects No. 46). London: HMSO.
  • Iaconisi, V., Bonellia, A., Pupino, R., Gai, F. & Paris, G. (2018). Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture, 484,197-204.
  • Ichihara, K., Shibahara, A., Yamamoto, K. & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31,535-539.
  • La Rovere, M.T. & Christensen, J.H. (2015). The autonomic nervous system and cardiovascular disease: role of n-3 PUFAs. Vascular Pharmacology, 71,1-10.
  • Njinkoue, J.M., Barnathan, G., Miralles, J., Gaydou, E.M. & Samb, A. (2002). Lipids and fatty acids in muscle, liver and skin of three edible fish from the Senegalese coast: Sardinella maderensis, Sardinella aurita and Cephalopholis taeniops. Comparative Biochemistry and Physiology, 131,395-402.
  • Omri, B., Chalghoumi, R. & Izzo, L. (2019). Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens' Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients, 11, 813.
  • Özoğul, Y., Özoğul, F. & Alagöz, S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey. Food Chemistry, 103,217-223.
  • Özoğul. F., Yavuzer, E., Özoğul, Y. & Kuley, E. (2013). Comparative quality loss in wild and cultured rainbow trout (Oncorhynchus mykiss) during chilling storage. Food Science and Technology Research, 19, 445-454.
  • Paulus, K., Zacharias, R., Robinson, L. & Geidel, H. (1979). Kritische Betrachtungen zur “Bewetenden Prufung mit skale” als einem Wesentlichen Verfahren der Sensorichen Analyse. LWT-Food Science and Technology, 12 ,52-61.
  • Rahman, S.A., Huah, T.S., Hassan. & O, Daud, N.M. (1995). Fatty acid composition of some Malaysian freshwater fish. Food Chemistry, 54,45-49.
  • Simopoulos, A.P. (1991). Omega-3 fatty acids in health and disease and in growth and development, a review. The American Journal of Clinical Nutrition, 54, 438-463.
  • Simopoulos AP. 2010. The omega-6/omega-3 fatty acid ratio: Health implications. Oilseeds and Fats, Crops and Lipids. 17(5):267-275.
  • Tidball, M.M., Exler, J., Somanchi, M., Williams, J., Kraft, C., Curtis, P. & Tidbal, K.G. (2017). Addressing information gaps in wild-caught foods in the US: Brook trout nutritional analysis for inclusion into the USDA national nutrient database for standard reference. Journal of Food Composition and Analysis, 60,57-63.
  • Turchini, G.M., Hermon, K.M. & Francis, D.S. (2018). Fatty acids and beyond: Fillet nutritional characterization of rainbow trout (Oncorhynchus mykiss) fed different dietary oil sources. Aquaculture, 491,391-397.
  • Ulbricht, T.L.V. & Southgate, D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet, 338, 985-992.
  • Valfré, F., Caprino, F. & Turchini, G.M. (2003). The health benefit of seafood. Veterinary Research Communications, 27, 507-512.
  • Ward, O.P. & Singh, A. (2005). Omega-3/6 fatty acids: alternative sources of production. Process Biochemistry, 40,3627-3652.
  • Yavuzer, E. (2018). Development of defective fish egg sorting machine with colour sensor for trout facilities. Aquaculture Research, 49,3634-3637.
  • Yavuzer, E. (2020). Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) with Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. Acta Aquatica Turcica, 16, 106-112.
  • Zhu, Y., Tan, Q., Zhang, L., Yao, J., Zhou, H., Hu, P., Liang, X. & Liu, H. (2019). The migration of docosahexenoic acid (DHA) to the developing ovary of female zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part A: Molecular & integrative physiology, 233,97-105.

Atık Balık Derilerinin Yağ Asidi Profilleri ve Krakerlerin Potansiyel Kullanımı

Year 2020, Volume: 5 Issue: 4, 527 - 532, 31.12.2020
https://doi.org/10.35229/jaes.766584

Abstract

Bu çalışmanın amacı, yetiştiricilik yolu ile elde edilmiş gökkuşağı alabalığı (G1), çipura (G2) ve levrek (G3) derilerinin yağ asidi profillerini incelemek ve bu balık derilerinden elde edilen yenilebilir krakerlerin panelist algılarını duyusal analizle ölçmektir. Grupların yağ asidi bileşimleri, doymuş (SFA'lar), tekli doymamış (MUFA'lar) ve çoklu doymamış yağ asitleri (PUFA'lar) için sırasıyla % 21.27- 24.59, % 41.43-45.18 ve % 28.06-29.48 arasında değişmiştir. w6 / w3 PUFA'ların oranı G1'de 1.27, G2'de 1.77 ve G3'te 1.71 idi. Aterojenisite (IA) ve Trombojenisite Endeksi (IT) değerleri sırasıyla 0.33 ila 0.36 ve 0.26 ila 0.31 arasında değişmiştir.

References

  • Bligh, E.C. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37,913-917.
  • Bouaziz, M., Bejaoui, S., Rabeh, I., Besbes, R., El, R., Cafsi, M. & Falcon, J. (2017). Impact of temperature on sea bass, Dicentrarchus labrax, retina: Fatty acid composition, expression of rhodopsin and enzymes of lipid and melatonin metabolism. Experimental Eye Research, 159, 87-97.
  • Chen, I.C., Chapman, F.A., Wei, C.I., Porteir, K.M. & O”Keefe, S.F. (1995). Differentiation of cultured and wild sturgeon (Acipencer oxyrinchus desotoi) based on fatty acid composition. Journal of Food Science, 60, 631-635.
  • Childs, M.T., King, I.B., Knopp, & R.H. (1990). Divergent lipoprotein responses to fish oils with various ratios of eicosapentaenoic and docosahexaenoic acids. The American Journal of Clinical Nutrition, 52, 632-639.
  • Conner, W.E. (2000). Importance of n-3 fatty acids in health and disease. The American Journal of Clinical Nutrition, 17,171S-175S.
  • Cui, L., Wang, S., Yang, X., Gao, L., Zheng, M., Wang, R., Qiao, L. & Xu, C. (2018). Fatty acids, polychlorinated dibenzo-p-dioxins and dibenzofurans, and dioxin-like polychlorinated biphenyls in paired muscle and skin from fish from the Bohai coast, China: Benefits and risks associated with fish consumption. Science of the Total Environment, 639, 952-960.
  • Erkan, N. & Özden, Ö. (2007). The changes of fatty acid and amino acid compositions in sea bream (Sparus aurata) during irradiation process. Radiation Physics and Chemistry, 76,1636-1641.
  • Fenton, W.S., Hibbeln, J. & Knable M. (2000). Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biological Psychiatry, 47,8-21.
  • Furnier, V., Destaillats, F., Juaneda, P., Dionisi, F., Lambelet, P., Sebedio, J.L. & Bordeaux, O. (2006). Thermal degradation of long-chain polyunsatured fatty acids during deodozation of fish oil. European Journal of Lipid Science and Technology, 108, 33-42.
  • Ghaeni, M., Ghahfarokhi, K. & Zaheri, L. (2013). Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in Leiognathusbindus and Upeneussulphureus. Journal of Marine Science: Research & Development, 3, 1.
  • Giudetti, A.M. & Cagnazzo, R. (2012). Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. Prostaglandins & Other Lipid Mediators, 99,57-67.
  • HMSO UK. (1994). Nutritional aspects of cardiovascular disease (report on health and social subjects No. 46). London: HMSO.
  • Iaconisi, V., Bonellia, A., Pupino, R., Gai, F. & Paris, G. (2018). Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture, 484,197-204.
  • Ichihara, K., Shibahara, A., Yamamoto, K. & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31,535-539.
  • La Rovere, M.T. & Christensen, J.H. (2015). The autonomic nervous system and cardiovascular disease: role of n-3 PUFAs. Vascular Pharmacology, 71,1-10.
  • Njinkoue, J.M., Barnathan, G., Miralles, J., Gaydou, E.M. & Samb, A. (2002). Lipids and fatty acids in muscle, liver and skin of three edible fish from the Senegalese coast: Sardinella maderensis, Sardinella aurita and Cephalopholis taeniops. Comparative Biochemistry and Physiology, 131,395-402.
  • Omri, B., Chalghoumi, R. & Izzo, L. (2019). Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens' Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients, 11, 813.
  • Özoğul, Y., Özoğul, F. & Alagöz, S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey. Food Chemistry, 103,217-223.
  • Özoğul. F., Yavuzer, E., Özoğul, Y. & Kuley, E. (2013). Comparative quality loss in wild and cultured rainbow trout (Oncorhynchus mykiss) during chilling storage. Food Science and Technology Research, 19, 445-454.
  • Paulus, K., Zacharias, R., Robinson, L. & Geidel, H. (1979). Kritische Betrachtungen zur “Bewetenden Prufung mit skale” als einem Wesentlichen Verfahren der Sensorichen Analyse. LWT-Food Science and Technology, 12 ,52-61.
  • Rahman, S.A., Huah, T.S., Hassan. & O, Daud, N.M. (1995). Fatty acid composition of some Malaysian freshwater fish. Food Chemistry, 54,45-49.
  • Simopoulos, A.P. (1991). Omega-3 fatty acids in health and disease and in growth and development, a review. The American Journal of Clinical Nutrition, 54, 438-463.
  • Simopoulos AP. 2010. The omega-6/omega-3 fatty acid ratio: Health implications. Oilseeds and Fats, Crops and Lipids. 17(5):267-275.
  • Tidball, M.M., Exler, J., Somanchi, M., Williams, J., Kraft, C., Curtis, P. & Tidbal, K.G. (2017). Addressing information gaps in wild-caught foods in the US: Brook trout nutritional analysis for inclusion into the USDA national nutrient database for standard reference. Journal of Food Composition and Analysis, 60,57-63.
  • Turchini, G.M., Hermon, K.M. & Francis, D.S. (2018). Fatty acids and beyond: Fillet nutritional characterization of rainbow trout (Oncorhynchus mykiss) fed different dietary oil sources. Aquaculture, 491,391-397.
  • Ulbricht, T.L.V. & Southgate, D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet, 338, 985-992.
  • Valfré, F., Caprino, F. & Turchini, G.M. (2003). The health benefit of seafood. Veterinary Research Communications, 27, 507-512.
  • Ward, O.P. & Singh, A. (2005). Omega-3/6 fatty acids: alternative sources of production. Process Biochemistry, 40,3627-3652.
  • Yavuzer, E. (2018). Development of defective fish egg sorting machine with colour sensor for trout facilities. Aquaculture Research, 49,3634-3637.
  • Yavuzer, E. (2020). Comparing the Fatty Acid Level of Sand Smelt (Atherina boyeri) with Rainbow Trout (Oncorhynchus mykiss) as a Cheaper Protein and Fatty Acid Source. Acta Aquatica Turcica, 16, 106-112.
  • Zhu, Y., Tan, Q., Zhang, L., Yao, J., Zhou, H., Hu, P., Liang, X. & Liu, H. (2019). The migration of docosahexenoic acid (DHA) to the developing ovary of female zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part A: Molecular & integrative physiology, 233,97-105.
There are 31 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Emre Yavuzer 0000-0002-9192-713X

Publication Date December 31, 2020
Submission Date July 8, 2020
Acceptance Date November 2, 2020
Published in Issue Year 2020 Volume: 5 Issue: 4

Cite

APA Yavuzer, E. (2020). Fatty acid profiles of waste fish skins and potential use for crackers. Journal of Anatolian Environmental and Animal Sciences, 5(4), 527-532. https://doi.org/10.35229/jaes.766584


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS