Araştırma Makalesi
BibTex RIS Kaynak Göster

Edirne, Tekirdağ, Kırklareli ve İstanbul İllerinde Atmosferik Engelleme ve Sıcak-Soğuk Hava Dalgaları İlişkisi

Yıl 2020, Cilt: 5 Sayı: 4, 611 - 617, 31.12.2020
https://doi.org/10.35229/jaes.798781

Öz

Bu çalışma 2010-2019 yılları arasında; Edirne, Tekirdağ, Kırklareli ve Sarıyer-Kumköy-Kilyos istasyonlarında gözlenen sıcak-soğuk hava dalgaları ve atmosferik engelleme arasındaki ilişkiyi incelemek amacıyla yapılmıştır. Sıcak ve soğuk hava dalgalarının referans değerleri için her istasyondaki mevsimlik sıcaklık verilerinin 90. ve 10. persantil değerleri kullanılmıştır. Yapılan çalışmanın sonucu olarak; soğuk hava dalgalarının ilkbahar mevsiminde ortalama olay sayısı atmosferik engelleme gerçekleşen günlerde engelleme olmayan günlere göre en az %25 azalma olsa da, soğuk hava dalgalarının ortalama sürelerinin en az %13 arttığı tespit edilmiştir. Yaz mevsiminde ise atmosferik engellemenin olduğu günlerdeki soğuk hava dalgalarının ortalama olay sayısı, engelleme olmayan günlerde görülen ortalama olay sayısının en az 3,5 katıdır ve aynı zamanda yaşanan olayların ortalama sayısının da en ez %30 arttığı görülmüştür. Soğuk hava dalgaları ve atmosferik engelleme arasında çalışılan istasyonlarda kış mevsimi için genel bir yargıya ulaşılamamıştır fakat sonbahar mevsiminde genel olarak ortalama olay süresinin arttığı görülmektedir. Sıcak hava dalgaları için, kış mevsiminde engellemeli günlerdeki ortalama olay sayısı engelleme olmayan günlerdeki olay sayısının en az yarısına düştüğü görülmektedir. Buna rağmen olayların süresinde belirgin bir değişim görülmemektedir. Sıcak hava dalgası ve atmosferik engelleme olayları arasında bahar mevsimlerinde herhangi bir sonuca ulaşılamamıştır. Daha doğru ve anlamlı sonuçların elde edilmesi için 10 yıl değil, daha uzun süreli araştırmaların yapılması gerekmektedir.

Teşekkür

Yazarlar, sıcaklık verileri için Meteoroloji Genel Müdürlüğü’ne teşekkür eder.

Kaynakça

  • Aalijahan, M., Salahi, B., Rahimi, Y.G. et al. A new approach in temporal-spatial reconstruction and synoptic analysis of cold waves in the northwest of Iran. Theor Appl Climatol 137, 341–352 (2019). https://doi.org/10.1007/s00704-018-2601-7
  • Barriopedro D., García-Herrera R, Lupo AR, Hernández E (2006) A climatology of northern hemisphere blocking. J Clim. 19(6):1042–1063. https://doi.org/10.1175/JCLI3678.1
  • Brunner L, Schaller N, Anstey J, Sillmann J, Steiner AK (2018) Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys Res Lett 45: 6311–6320. https://doi.org/10.1029/2018GL077837
  • Crawford, A. D., Alley, K. E., Cooke A. M., and Serreze, M. C. (2020) Synoptic Climatology of rain on Snow Events in Alaska. Mon. Wea. Rev., 148, 1275–1295, https://doi.org/10.1175/MWR-D-19-0311.1.
  • Demirtaş, M. (2017). High impact heat waves over The Euro-Mediterranean Region and Turkey - in concert with atmospheric blocking and large dynamical and physical anomalies. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi,18,1.
  • Demirtaş, M. (2017). The Large-Scale Environment of The European 2012 high-impact cold wave: Prolonged Upstream And Downstream Atmospheric Blocking. Weather, 72,10.
  • Efe, B., Lupo, A.R. & Deniz, A. (2019). The relationship between atmospheric blocking and precipitation changes in Turkey between 1977 and 2016. Theor Appl Climatol 138, 1573–1590. https://doi.org/10.1007/s00704-019-02902-z
  • Efe, B., Lupo, A.R. & Deniz, A. (2019). Extreme temperatures linked to the atmospheric blocking events in Turkey between 1977 and 2016. Natural Hazards. 66(2):781-808. Doi: 10.1007/s11069-020-04252-w
  • Efe, B., Lupo, A.R. & Deniz, A. (2020). Extreme temperatures linked to the atmospheric blocking events in Turkey between 1977 and 2016. Nat Hazards. https://doi.org/10.1007/s11069-020-04252-w
  • Hall, J., Loboda, T. (2018). Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events. Environ. Res. Lett. 13–55010
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, KC., Ropelewski, C., Wang, J., Jenne, R., Joseph, D. (1996). The relationship between atmospheric blocking and precipitation changes in Turkey between 1977 and 2016 Author's personal copy NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–471
  • Khodayar S, Kalthoff N, Kottmeier C (2018) Atmospheric conditions associated with heavy precipitation events in comparison to seasonal means in the western Mediterranean region. Clim Dyn 51:951–967. https://doi.org/10.1007/s00382-016-3058-y
  • Lhotka O, Kyselý J, Plavcová E (2018) Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Clim Dyn 50:4249–4262. https://doi.org/10.1007/s00382-017-3873-9
  • Matsueda, M. (2011). Predictability of Euro-Russian blocking in summer of 2010, Geophys. Res. Lett., 38, L06801. doi:10.1029/2010GL046557
  • MGM, 1990-2019 Edirne, Tekirdağ, Kırklareli, Sarıyer-Kumköy-Kilyos İstasyonları Günlük ortalama sıcaklık verileri. Meteoroloji Genel Müdürlüğü.
  • O’Reilly CH, Minobe S, Kuwano-Yoshida A (2016) The influence of the gulf stream on wintertime European blocking. Clim Dyn 47:1545– 1567. https://doi.org/10.1007/s00382-015-2919-0
  • Rabinowitz JL, Lupo AR, Guinan PE (2018, 2018) Evaluating linkages between atmospheric blocking patterns and heavy rainfall events across the north-central Mississippi River valley for different ENSO phases. Adv Meteorol. Article ID : 1217830
  • Reynolds, D.D.; Lupo, A.R.; Jensen, A.D.; Market, P.S. (2017). The Predictability of Northern Hemispheric Blocking Using an Ensemble Mean Forecast System. Proceedings. 1, 87.
  • Röthlisberger, M. & Martius O. (2019). Quantifying The Local Effect Of Northern Hemisphere Atmospheric Blocks On The Persistence Of Summer Hot And Dry Spells. Geophys. Res. Lett. 46, 10101–10111.
  • Semenova, I. G. (2013). Regional Atmospheric Blocking in the Drought Periods in Ukraine. Journal of Earth Science and Engineering. 3, 341-348.
  • Sitnov SA, Mokhov II, Lupo AR (2014). Evolution of the water vapor plume over Eastern Europe during summer 2010 atmospheric blocking. Adv Meteorol. 2014:1–11. https://doi.org/10.1155/2014/ 253953
  • Universiy of Missouri Blocking Archive. url: http://weather.missouri.edu/gcc (alındığı tarih 15 Ağustos 2020).
  • Yun, S.-G., Yoo, C. (2019). The Effects of Spring and Winter Blocking on PM10 Concentration in Korea. Atmosphere, 10, 410

Atmospheric Blocking and Heat-Cold Waves Relationship in Edirne, Tekirdağ, Kırklareli, Istanbul Provinces

Yıl 2020, Cilt: 5 Sayı: 4, 611 - 617, 31.12.2020
https://doi.org/10.35229/jaes.798781

Öz

This study was conducted to examine the relationship between atmospheric blocking and heat-cold waves observed at Edirne, Tekirdağ, Kırklareli, and Sarıyer-Kumköy-Kilyos stations between 2010 and 2019. For reference value of heat-cold waves, seasonal values at each station are given for the 90th-10th percentile of the data. In the results of the study, although the average number of events in the spring of cold waves decreased by at least 25% on the days with blocking compared to the days without blocking, it was determined that the average duration of the cold waves increased by at least 13%. In the summer season, the average number of cold wave events on days with obstruction is at least 3.5 times the average number of events on days without blocking, and also, the average number of events has increased by at least 30%. There is no general judgment for the winter season at the stations where cold waves and atmospheric blocking are studied, but it is observed that the average event duration generally increases in the autumn season. For heatwaves, it is seen that the average number of events on unblocked days in winter falls to at least half the number of events on non-blocking days. However, there is no significant change in the duration of the events. Between the heatwave and atmospheric blocking, no results were achieved in the spring and autumn season. To obtain more accurate and meaningful results, more long-term studies are required, not 10 years.

Kaynakça

  • Aalijahan, M., Salahi, B., Rahimi, Y.G. et al. A new approach in temporal-spatial reconstruction and synoptic analysis of cold waves in the northwest of Iran. Theor Appl Climatol 137, 341–352 (2019). https://doi.org/10.1007/s00704-018-2601-7
  • Barriopedro D., García-Herrera R, Lupo AR, Hernández E (2006) A climatology of northern hemisphere blocking. J Clim. 19(6):1042–1063. https://doi.org/10.1175/JCLI3678.1
  • Brunner L, Schaller N, Anstey J, Sillmann J, Steiner AK (2018) Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys Res Lett 45: 6311–6320. https://doi.org/10.1029/2018GL077837
  • Crawford, A. D., Alley, K. E., Cooke A. M., and Serreze, M. C. (2020) Synoptic Climatology of rain on Snow Events in Alaska. Mon. Wea. Rev., 148, 1275–1295, https://doi.org/10.1175/MWR-D-19-0311.1.
  • Demirtaş, M. (2017). High impact heat waves over The Euro-Mediterranean Region and Turkey - in concert with atmospheric blocking and large dynamical and physical anomalies. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi,18,1.
  • Demirtaş, M. (2017). The Large-Scale Environment of The European 2012 high-impact cold wave: Prolonged Upstream And Downstream Atmospheric Blocking. Weather, 72,10.
  • Efe, B., Lupo, A.R. & Deniz, A. (2019). The relationship between atmospheric blocking and precipitation changes in Turkey between 1977 and 2016. Theor Appl Climatol 138, 1573–1590. https://doi.org/10.1007/s00704-019-02902-z
  • Efe, B., Lupo, A.R. & Deniz, A. (2019). Extreme temperatures linked to the atmospheric blocking events in Turkey between 1977 and 2016. Natural Hazards. 66(2):781-808. Doi: 10.1007/s11069-020-04252-w
  • Efe, B., Lupo, A.R. & Deniz, A. (2020). Extreme temperatures linked to the atmospheric blocking events in Turkey between 1977 and 2016. Nat Hazards. https://doi.org/10.1007/s11069-020-04252-w
  • Hall, J., Loboda, T. (2018). Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events. Environ. Res. Lett. 13–55010
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, KC., Ropelewski, C., Wang, J., Jenne, R., Joseph, D. (1996). The relationship between atmospheric blocking and precipitation changes in Turkey between 1977 and 2016 Author's personal copy NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437–471
  • Khodayar S, Kalthoff N, Kottmeier C (2018) Atmospheric conditions associated with heavy precipitation events in comparison to seasonal means in the western Mediterranean region. Clim Dyn 51:951–967. https://doi.org/10.1007/s00382-016-3058-y
  • Lhotka O, Kyselý J, Plavcová E (2018) Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Clim Dyn 50:4249–4262. https://doi.org/10.1007/s00382-017-3873-9
  • Matsueda, M. (2011). Predictability of Euro-Russian blocking in summer of 2010, Geophys. Res. Lett., 38, L06801. doi:10.1029/2010GL046557
  • MGM, 1990-2019 Edirne, Tekirdağ, Kırklareli, Sarıyer-Kumköy-Kilyos İstasyonları Günlük ortalama sıcaklık verileri. Meteoroloji Genel Müdürlüğü.
  • O’Reilly CH, Minobe S, Kuwano-Yoshida A (2016) The influence of the gulf stream on wintertime European blocking. Clim Dyn 47:1545– 1567. https://doi.org/10.1007/s00382-015-2919-0
  • Rabinowitz JL, Lupo AR, Guinan PE (2018, 2018) Evaluating linkages between atmospheric blocking patterns and heavy rainfall events across the north-central Mississippi River valley for different ENSO phases. Adv Meteorol. Article ID : 1217830
  • Reynolds, D.D.; Lupo, A.R.; Jensen, A.D.; Market, P.S. (2017). The Predictability of Northern Hemispheric Blocking Using an Ensemble Mean Forecast System. Proceedings. 1, 87.
  • Röthlisberger, M. & Martius O. (2019). Quantifying The Local Effect Of Northern Hemisphere Atmospheric Blocks On The Persistence Of Summer Hot And Dry Spells. Geophys. Res. Lett. 46, 10101–10111.
  • Semenova, I. G. (2013). Regional Atmospheric Blocking in the Drought Periods in Ukraine. Journal of Earth Science and Engineering. 3, 341-348.
  • Sitnov SA, Mokhov II, Lupo AR (2014). Evolution of the water vapor plume over Eastern Europe during summer 2010 atmospheric blocking. Adv Meteorol. 2014:1–11. https://doi.org/10.1155/2014/ 253953
  • Universiy of Missouri Blocking Archive. url: http://weather.missouri.edu/gcc (alındığı tarih 15 Ağustos 2020).
  • Yun, S.-G., Yoo, C. (2019). The Effects of Spring and Winter Blocking on PM10 Concentration in Korea. Atmosphere, 10, 410
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mahiye Göksu Canyılmaz 0000-0003-1538-6850

Bahtiyar Efe 0000-0001-5604-7068

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 23 Eylül 2020
Kabul Tarihi 30 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 4

Kaynak Göster

APA Canyılmaz, M. G., & Efe, B. (2020). Edirne, Tekirdağ, Kırklareli ve İstanbul İllerinde Atmosferik Engelleme ve Sıcak-Soğuk Hava Dalgaları İlişkisi. Journal of Anatolian Environmental and Animal Sciences, 5(4), 611-617. https://doi.org/10.35229/jaes.798781


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS