Extraction and Characterisation of Type I Collagen from the Scales of Redcoat Sargocentron rubrum
Yıl 2024,
Cilt: 9 Sayı: 4, 616 - 622
Servet Ahmet Doğdu
,
Cemal Turan
,
Tolga Depci
Öz
Abstract: Collagen, one of the most important biopolymers, is widely used in the food and pharmaceutical industries due to its functional and technological properties. Alien species, especially of Indo-Pacific origin, entering Mediterranean waters can exert pressure on native species and cause ecological and economic effects. In this study, we produced collagen from the scale of Sargocentum rubrum to bring this species to the economy and to reduce the pressure on our infested marine ecosystem as a surplus value. Acid-soluble collagen was extracted; a characteristic sodium dodecyl SDS-PAGE gel electrophoresis profile for type I collagen was obtained from the S. rubrum scales. The yield of collagen extracted from the scales of S. rubrum by the ASC method was calculated as 11.2%. The results of the analyses show that the collagen obtained from S. rubrum scales was Type I collagen with high yields. It has been proved that non-economic alien species as S. rubrum used in our study can be used as an alternative source instead of terrestrial animal collagen. The results obtained show that collagen obtained from S. rubrum scales can be a good alternative source for biomedical and other cosmetic industries.
Destekleyen Kurum
İskenderun Technical University Scientific Research Projects Office
Teşekkür
This study was supported by the İskenderun Technical University Scientific Research Projects Office (2022YP05). The authors thank the İskenderun Technical University Scientific Research Projects Office.
Kaynakça
- Akita, M., Nishikawa, Y., Shigenobu, Y., Ambe, D.,
Morita, T., Morioka, K. & Adachi, K. (2020).
Correlation of proline, hydroxyproline and serine
content, denaturation temperature and circular
dichroism analysis of type I collagen with the
physiological temperature of marine teleosts.
Food Chemistry, 329, 126775. DOI:
10.1016/j.foodchem.2020.126775
- Alemu Reta, B., Murugesh Babu, K. & Tesfaye, T.
(2024). Smart and intelligent biomaterials for
novel applications–a review. International
Journal of Polymeric Materials and Polymeric
Biomaterials, 74(2),1-19. DOI:
10.1080/00914037.2024.2316191
- Alves, A.L., Marques, A.L., Martins, E., Silva, T.H. &
Reis, R.L. (2017). Cosmetic potential of marine
fish skin collagen. Cosmetics, 4(4), 39.
- Antoine, F.R., Wei, C.I., Littell, R.C. & Marshall, M.R.
(1999). HPLC method for analysis of free amino
acids in fish using o-phthaldialdehyde precolumn
derivatization. Journal of Agricultural and Food
Chemistry, 47(12), 5100-5107. DOI:
10.1021/jf990032+
- Ampitiya, A.G.D.M., Gonapinuwala, S.T., Fernando,
C.A.N. & De Croos, M.D.S.T. (2023). Extraction
and characterisation of type I collagen from the
skin offcuts generated at the commercial fish
processing centres. Journal of Food Science and
Technology, 60(2), 484-493. DOI:
10.1007/s13197-022-05630-x
- Ata, O., Bozdogan, N., Mataraci, C.E., Kumcuoglu, S.,
Bayram, S.K. & Tavman, S. (2025). Extraction
and characterization of valuable compounds from
chicken sternal cartilage: Type II collagen and
chondroitin sulfate. Food Chemistry, 462,
141023. DOI: 10.1016/j.foodchem.2024.141023
- Berillis, P. (2015). Marine collagen: Extraction and
applications. Research Trends in Biochemistry,
Molecular Biology and Microbiology, 1-13.
- Billiet, T., Vandenhaute, M., Schelfhout, J., Van
Vlierberghe, S. & Dubruel, P. (2012). A review
of trends and limitations in hydrogel-rapid
prototyping for tissue engineering. Biomaterials,
33(26), 6020-6041. DOI:
10.1016/j.biomaterials.2012.04.050
- Can, M.F., Başusta, N. & Çekiç, M. (2002). Weightlength relationships for selected fish species of the
small-scale fisheries off the south coast of
Iskenderun Bay. Turkish Journal of Veterinary &
Animal Sciences, 26(5), 1181-1183.
- Cherim, M., Mustafa, A., Cadar, E., Lupașcu, N., Paris,
S. & Sirbu, R. (2019). Collagen sources and areas
of use. European Journal of Medicine and
Natural Sciences, 2(2), 8-13. DOI:
10.26417/ejis.v4i1.p122-128
- Chowdhury, S.R., Mh Busra, M.F., Lokanathan, Y.,
Ng, M.H., Law, J.X., Cletus, U.C. & Binti Haji
Idrus, R. (2018). Collagen type I: A versatile
biomaterial. Novel Biomaterials for Regenerative
Medicine, 1077, 389-414. DOI: 10.1007/978-981-
13-0947-2_21
- Coppola, D., Oliviero, M., Vitale, G.A., Lauritano, C.,
D’Ambra, I., Iannace, S. & de Pascale, D.
(2020). Marine collagen from alternative and
sustainable sources: Extraction, processing and
applications. Marine Drugs, 18(4), 214. DOI:
10.3390/md18040214
- Doğdu, S.A., Turan, C. & Ayas, D. (2019). Isolation and
characterization of collagen and gelatin from skin
of silver cheeked pufferfish Lagocephalus
sceleratus for pharmaceutical and biomedical
applications. Natural and Engineering Sciences,
4(3), 308-314. DOI: 10.28978/nesciences.661099
- Doğdu, S.A., Turan, C., Depci, T. & Ayas, D. (2021).
Natural hydroxyapatite obtained from pufferfish
teeth for potential dental application. Journal of
Ceramic Processing Research, 22(3), 356-361.
DOI: 10.36410/jcpr.2021.22.3.356
- Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E. & Turan,
F. (2023). Characterization of long-spıned sea
urchın Diadema setosum shell and potential usage
areas. Pakistan Journal of Marine Sciences,
32(1), 83-88.
- Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E., Sangün,
K. & Ayas, D. (2024). Hydroxyapatite production
and characterization from four pufferfish species
teeth. Journal of Ceramic Processing Research,
25(1), 85-91. DOI: 10.36410/jcpr.2024.25.1.85
- Duan, R., Zhang, J., Du, X., Yao, X. & Konno, K.
(2009). Properties of collagen from skin, scale and
bone of carp (Cyprinus carpio). Food Chemistry,
112(3), 702-706. DOI:
10.1016/j.foodchem.2008.06.020
- Eastoe, J.E. (1957). The amino acid composition of fish
collagen and gelatin. Biochemical Journal, 65(2),
363-368. DOI: 10.1042/bj0650363
- Felician, F.F., Xia, C., Qi, W. & Xu, H. (2018). Collagen
from marine biological sources and medical
applications. Chemistry & Biodiversity, 15(5),
e1700557. DOI: 10.1002/cbdv.201700557
Froese, R. & Pauly, D. (2024). FishBase. World Wide
Web electronic publication. www.fishbase.org,
version (06/2024).
- Gorgieva, S. & Kokol, V. (2011). Collagen-vs. gelatinebased biomaterials and their biocompatibility:
review and perspectives. Biomaterials
Applications for Nanomedicine, 2, 17-52.
- Gómez-Guillén, M.C., Turnay, J., Fernández-Dıaz,
M.D., Ulmo, N., Lizarbe, M.A. & Montero, P.
(2002). Structural and physical properties of
gelatin extracted from different marine species: a
comparative study. Food Hydrocolloids, 16(1),
25-34.
- Haas, G. & Steinitz, H. (1947). Erythrean fishes on the
Mediterranean coast of Palestine. Nature,
160(4053), 28-28. DOI: 10.1038/160028b0
- Helrich, K. (1990). AOAC: official methods of analysis
(Volume 1). Journal of the Association of Official
Agricultural Chemists, 1, 237-242.
- Kabakli, F. & Erguden, D. (2022). Age, Growth, and
Mortality of the Redcoat Sargocentron rubrum
(Forsskal, 1775), in Iskenderun Bay, Northeastern
Mediterranean. Thalassas: An International
Journal of Marine Sciences, 38(1), 103-111. DOI:
10.1007/s41208-021-00359-4
- Kaewdang, O., Benjakul, S., Kaewmanee, T. &
Kishimura, H. (2014). Characteristics of
collagens from the swim bladders of yellowfin
tuna (Thunnus albacares). Food Chemistry, 155,
264-270. DOI: 10.1016/j.foodchem.2014.01.076
- Khong, N.M., Yusoff, F.M., Jamilah, B., Basri, M.,
Maznah, I., Chan, K.W. & Nishikawa, J.
(2016). Nutritional composition and total collagen
content of three commercially important edible
jellyfish. Food Chemistry, 196, 953-960.
- Kittiphattanabawon, P., Benjakul, S., Visessanguan,
W., Nagai, T. & Tanaka, M. (2005).
Characterisation of acid-soluble collagen from
skin and bone of bigeye snapper (Priacanthus
tayenus). Food Chemistry, 89(3), 363-372. DOI:
10.1016/j.foodchem.2015.09.094
- Laemmli, U.K. (1970). Cleavage of structural proteins
during the assembly of the head of bacteriophage
T4. Nature, 227(5259), 680-685. DOI:
10.1038/227680a0
- Light, N. & Bailey, A. J. (1985). Collagen cross‐links:
location of pyridinoline in type I collagen. FEBS
Letters, 182(2), 503-508.
- Li, P. & Wu, G. (2018). Roles of dietary glycine, proline,
and hydroxyproline in collagen synthesis and
animal growth. Amino Acids, 50, 29-38. DOI:
10.1007/s00726-017-2490-6
- Li, Z.R., Wang, B., Chi, C.F., Zhang, Q.H., Gong, Y.D.,
Tang, J.J. & Ding, G.F. (2013). Isolation and
characterization of acid soluble collagens and
pepsin soluble collagens from the skin and bone
of Spanish mackerel (Scomberomorous
niphonius). Food Hydrocolloids, 31(1), 103-113.
DOI: 10.1016/j.foodhyd.2012.10.001
- Lim, Y.S., Ok, Y.J., Hwang, S.Y., Kwak, J.Y., & Yoon,
S. (2019). Marine collagen as a promising
biomaterial for biomedical applications. Marine
Drugs, 17(8), 467. DOI: 10.3390/md17080467
- Lu, W.C., Chiu, C.S., Chan, Y.J., Mulio, A.T. & Li, P.H.
(2023). Characterization and biological properties
of marine by-product collagen through
ultrasound-assisted extraction. Aquaculture
Reports, 29, 101514. DOI:
10.1016/j.aqrep.2023.101514
- Meyer, M. (2019). Processing of collagen based
biomaterials and the resulting materials
properties. Biomedical Engineering Online,
18(1), 24. DOI: 10.1186/s12938-019-0647-0
- Muyonga, J.H., Cole, C.G.B. & Duodu, K.G. (2004).
Characterisation of acid soluble collagen from
skins of young and adult Nile perch (Lates
niloticus). Food Chemistry, 85(1), 81-89. DOI:
10.1016/j.foodchem.2003.06.006
- Nagai, T. & Suzuki, N. (2000). Isolation of Collagen from
Fish Waste Material Skin, Bone and Fins. Food
Chemistry, 68(3), 277-281. DOI: 10.1016/S0308-
8146(99)00188-0
- Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N.
& Suzuki, N. (2001). Isolation and
characterisation of collagen from the outer skin
waste material of cuttlefish (Sepia lycidas). Food
Chemistry, 72(4), 425-429. DOI: 10.1016/S0308-
8146(00)00249-1
- Naomi, R., Ridzuan, P.M. & Bahari, H. (2021). Current
insights into collagen type I. Polymers, 13(16),
2642. DOI: 10.3390/polym13162642
- Nasri, M. (2019). Bioactive Peptides from Fish Collagen
Byproducts. In: Simpson, B. K., Aryee, A. N., &
Toldrá, F. (Ed), Byproducts from agriculture and
fisheries: Adding value for food, feed, pharma and
fuels., 309-333p, John Wiley & Sons.
- Ogawa, H., Ueda, T., Aoyama, T., Aronheim, A.,
Nagata, S. & Fukunaga, R. (2003). A
SWI2/SNF2‐type ATPase/helicase protein,
mDomino, interacts with myeloid zinc finger
protein 2A (MZF‐2A) to regulate its
transcriptional activity. Genes to Cells, 8(4), 325-
339. DOI: 10.1046/j.1365-2443.2003.00636.x
- Pal, G.K. & Suresh, P.V. (2016). Sustainable valorisation
of seafood by-products: Recovery of collagen and
development of collagen-based novel functional
food ingredients. Innovative Food Science &
Emerging Technologies, 37, 201-215. DOI:
10.1016/j.ifset.2016.03.015
- Puad, N.M., Koshy, P., Abdullah, H.Z., Idris, M.I. &
Lee, T.C. (2019). Syntheses of hydroxyapatite
from natural sources. Heliyon, 5(5). DOI:
10.1016/j.heliyon.2019.e01588
- Rahman, M.A. (2019). Collagen of extracellular matrix
from marine invertebrates and its medical
applications. Marine Drugs, 17(2), 118. DOI:
10.3390/md17020118
- Randall, J.E. (1998). Revision of the Indo-Pacific
squirrelfishes (Beryciformes: Holocentridae:
Holocentrinae) of the genus Sargocentron, with
description of four new species. Indo-Pac. Fish.,
23, 1-105.
- Rodrigues, C.V., Sousa, R.O., Carvalho, A.C., Alves,
A.L., Marques, C.F., Cerqueira, M.T. & Silva,
T. H. (2023). Potential of Atlantic Codfish
(Gadus morhua) Skin collagen for skincare
biomaterials. Molecules, 28(8), 3394. DOI:
10.3390/molecules28083394
- Schmidt, M.M., Dornelles, R.C.P., Mello, R.O., Kubota,
E.H., Mazutti, M.A., Kempka, A.P. & Demiate,
I.M. (2016). Collagen extraction process.
International Food Research Journal, 23(3), 913-
922.
- Senaratne, L.S., Park, P.J. & Kim, S.K. (2006). Isolation
and characterization of collagen from brown
backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 97(2), 191-197. DOI:
10.1016/j.biortech.2005.02.024
- Sharma, S., Dwivedi, S., Chandra, S., Srivastava, A. &
Vijay, P. (2019). Collagen: A Brief Analysis.
Oral & Maxillofacial Pathology Journal, 10(1),1-
11. DOI: 10.5005/jp-journals-10037-1143
- Sheehy, E.J., Cunniffe, G.M. & O'Brien, F.J. (2018).
Collagen-based biomaterials for tissue
regeneration and repair. In: Barbosa M.A. &
Martins, L. C. M. (Ed), Peptides and proteins as
biomaterials for tissue regeneration and repair,
127-150p, Woodhead Publishing.
- Shenoy, M., Abdul, N.S., Qamar, Z., Al Bahri, B.M., Al
Ghalayini, K.Z.K. & Kakti, A. (2022). Collagen
structure, synthesis, and its applications: A
systematic review. Cureus, 14(5), e24856. DOI:
10.7759/cureus.24856
- Sionkowska, A., Kozłowska, J., Skorupska, M. &
Michalska, M. (2015). Isolation and
characterization of collagen from the skin of
Brama australis. International Journal of
Biological Macromolecules, 80, 605-609. DOI:
10.1016/j.ijbiomac.2015.07.032
- Son, S.A., Shin, E.S., Park, Y.M., Ma, A., Yang, H.,
Kim, S. & Shin, T.S. (2022). Composition of
collagen extracted from the skin of three different
varieties of fish. Journal of the Korean Society of
Food Science and Nutrition, 51(1), 71-81. DOI:
10.3746/jkfn.2022.51.1.71
- Sotelo, G.C., Blanco Comesaña, M., Ramos, P. & Pérez
Martín, R.I. (2016). Characterization of Collagen
from Different Discarded Fish Species of the
West Coast of the Iberian Peninsula. Journal of
Aquatic Food Product Technology. 25(3), 388-
399. DOI: 10.1080/10498850.2013.865283
- Stoilov, I., Starcher, B.C., Mecham, R.P. &
Broekelmann, T.J. (2018). Measurement of
elastin, collagen, and total protein levels in
tissues. Methods in Cell Biology, 43,133-146.
DOI: 10.1016/bs.mcb.2017.08.008
- Taskavak, E. & Bilecenoglu, M. (2001). Length–weight
relationships for 18 Lessepsian (Red Sea)
immigrant fish species from the eastern
Mediterranean coast of Turkey. Journal of the
Marine Biological Association of the United
Kingdom, 81(5), 895-896. DOI:
10.1017/S0025315401004805
- Türker, D., Zengin, K. & Bal, H. (2020). Length-weight
relationships of 11 lessepsian immigrant fish
species caught from Mediterranean coast of
Turkey (Antalya Bay). Acta Aquatica Turcica,
16(2), 301-304. DOI: 10.22392/actaquatr.670648
- Wahyu, Y.I., & Widjanarko, S.B. (2018). Extraction
Optimization And Characterization Of Acid
Soluble Collagen From Milkfish Scales (Chanos
chanos Forskal). Carpathian Journal of Food
Science & Technology, 10(1), 125-135.
- Wu, X., Cai, L., Cao, A., Wang, Y., Li, T. & Li, J.
(2016). Comparative study on acid‐soluble and
pepsin‐soluble collagens from skin and swim
bladder of grass carp (Ctenopharyngodon idella).
Journal of the Science of Food and Agriculture,
96(3), 815-821. DOI: 10.1002/jsfa.7154
- Yousefi, M., Ariffin, F. & Huda, N. (2017). An
alternative source of type I collagen based on byproduct with higher thermal stability. Food
Hydrocolloids, 63, 372-382. DOI:
10.1016/j.foodhyd.2016.09.029
- Yu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J.,
& Ding, G. (2018). Optimization of extraction
conditions and characterization of pepsinsolubilised collagen from skin of giant croaker
(Nibea japonica). Marine Drugs, 16(1), 29. Doi:
10.3390/md16010029
- Zeng, R., Tang, K., Tian, H. & Pei, Y. (2024). Collagen
materials with oriented structure for biomedical
applications. Journal of Polymer Science, 62(6),
998-1019. DOI: 10.1002/pol.20230664
Naylon balığı Sargocentron rubrum Pullarından Tip I Kolajen Ekstraksiyonu ve Karakterizasyonu
Yıl 2024,
Cilt: 9 Sayı: 4, 616 - 622
Servet Ahmet Doğdu
,
Cemal Turan
,
Tolga Depci
Öz
Öz: En önemli biyopolimerlerden biri olan kolajen, fonksiyonel ve teknolojik özellikleri nedeniyle gıda ve ilaç endüstrilerinde yaygın olarak kullanılmaktadır. Akdeniz sularına giren özellikle Hint-Pasifik kökenli yabancı türler, yerli türler üzerinde baskı oluşturarak ekolojik ve ekonomik etkilere neden olabilir. Bu çalışmada, bu türleri ekonomiye kazandırmak ve istila edilmiş deniz ekosistemimiz üzerindeki baskıyı azaltmak için Sargocentum rubrum pulundan kolajen üretimi gerçekleştirdik. Kolajen asitte çözünür kolajen yöntemi ile ekstrakte edildi; S. rubrum pullarından tip I kolajen için karakteristik bir sodyum dodesil SDS-PAGE jel elektroforez profili elde edildi. ASC yöntemi ile S. rubrum pullarından ekstrakte edilen kolajen verimi %11.2 olarak hesaplandı. Analiz sonuçları, S. rubrum pullarından elde edilen kolajenin yüksek verime sahip Tip I kolajen olduğunu göstermektedir. Çalışmamızda kullanılan S. rubrum gibi ekonomik olmayan yabancı türlerin karasal hayvan kolajeni yerine alternatif bir kaynak olarak kullanılabileceği kanıtlanmıştır. Elde edilen sonuçlar, S. rubrum pullarından elde edilen kolajenin biyomedikal ve diğer kozmetik endüstrileri için iyi bir alternatif kaynak olabileceğini göstermektedir.
Kaynakça
- Akita, M., Nishikawa, Y., Shigenobu, Y., Ambe, D.,
Morita, T., Morioka, K. & Adachi, K. (2020).
Correlation of proline, hydroxyproline and serine
content, denaturation temperature and circular
dichroism analysis of type I collagen with the
physiological temperature of marine teleosts.
Food Chemistry, 329, 126775. DOI:
10.1016/j.foodchem.2020.126775
- Alemu Reta, B., Murugesh Babu, K. & Tesfaye, T.
(2024). Smart and intelligent biomaterials for
novel applications–a review. International
Journal of Polymeric Materials and Polymeric
Biomaterials, 74(2),1-19. DOI:
10.1080/00914037.2024.2316191
- Alves, A.L., Marques, A.L., Martins, E., Silva, T.H. &
Reis, R.L. (2017). Cosmetic potential of marine
fish skin collagen. Cosmetics, 4(4), 39.
- Antoine, F.R., Wei, C.I., Littell, R.C. & Marshall, M.R.
(1999). HPLC method for analysis of free amino
acids in fish using o-phthaldialdehyde precolumn
derivatization. Journal of Agricultural and Food
Chemistry, 47(12), 5100-5107. DOI:
10.1021/jf990032+
- Ampitiya, A.G.D.M., Gonapinuwala, S.T., Fernando,
C.A.N. & De Croos, M.D.S.T. (2023). Extraction
and characterisation of type I collagen from the
skin offcuts generated at the commercial fish
processing centres. Journal of Food Science and
Technology, 60(2), 484-493. DOI:
10.1007/s13197-022-05630-x
- Ata, O., Bozdogan, N., Mataraci, C.E., Kumcuoglu, S.,
Bayram, S.K. & Tavman, S. (2025). Extraction
and characterization of valuable compounds from
chicken sternal cartilage: Type II collagen and
chondroitin sulfate. Food Chemistry, 462,
141023. DOI: 10.1016/j.foodchem.2024.141023
- Berillis, P. (2015). Marine collagen: Extraction and
applications. Research Trends in Biochemistry,
Molecular Biology and Microbiology, 1-13.
- Billiet, T., Vandenhaute, M., Schelfhout, J., Van
Vlierberghe, S. & Dubruel, P. (2012). A review
of trends and limitations in hydrogel-rapid
prototyping for tissue engineering. Biomaterials,
33(26), 6020-6041. DOI:
10.1016/j.biomaterials.2012.04.050
- Can, M.F., Başusta, N. & Çekiç, M. (2002). Weightlength relationships for selected fish species of the
small-scale fisheries off the south coast of
Iskenderun Bay. Turkish Journal of Veterinary &
Animal Sciences, 26(5), 1181-1183.
- Cherim, M., Mustafa, A., Cadar, E., Lupașcu, N., Paris,
S. & Sirbu, R. (2019). Collagen sources and areas
of use. European Journal of Medicine and
Natural Sciences, 2(2), 8-13. DOI:
10.26417/ejis.v4i1.p122-128
- Chowdhury, S.R., Mh Busra, M.F., Lokanathan, Y.,
Ng, M.H., Law, J.X., Cletus, U.C. & Binti Haji
Idrus, R. (2018). Collagen type I: A versatile
biomaterial. Novel Biomaterials for Regenerative
Medicine, 1077, 389-414. DOI: 10.1007/978-981-
13-0947-2_21
- Coppola, D., Oliviero, M., Vitale, G.A., Lauritano, C.,
D’Ambra, I., Iannace, S. & de Pascale, D.
(2020). Marine collagen from alternative and
sustainable sources: Extraction, processing and
applications. Marine Drugs, 18(4), 214. DOI:
10.3390/md18040214
- Doğdu, S.A., Turan, C. & Ayas, D. (2019). Isolation and
characterization of collagen and gelatin from skin
of silver cheeked pufferfish Lagocephalus
sceleratus for pharmaceutical and biomedical
applications. Natural and Engineering Sciences,
4(3), 308-314. DOI: 10.28978/nesciences.661099
- Doğdu, S.A., Turan, C., Depci, T. & Ayas, D. (2021).
Natural hydroxyapatite obtained from pufferfish
teeth for potential dental application. Journal of
Ceramic Processing Research, 22(3), 356-361.
DOI: 10.36410/jcpr.2021.22.3.356
- Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E. & Turan,
F. (2023). Characterization of long-spıned sea
urchın Diadema setosum shell and potential usage
areas. Pakistan Journal of Marine Sciences,
32(1), 83-88.
- Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E., Sangün,
K. & Ayas, D. (2024). Hydroxyapatite production
and characterization from four pufferfish species
teeth. Journal of Ceramic Processing Research,
25(1), 85-91. DOI: 10.36410/jcpr.2024.25.1.85
- Duan, R., Zhang, J., Du, X., Yao, X. & Konno, K.
(2009). Properties of collagen from skin, scale and
bone of carp (Cyprinus carpio). Food Chemistry,
112(3), 702-706. DOI:
10.1016/j.foodchem.2008.06.020
- Eastoe, J.E. (1957). The amino acid composition of fish
collagen and gelatin. Biochemical Journal, 65(2),
363-368. DOI: 10.1042/bj0650363
- Felician, F.F., Xia, C., Qi, W. & Xu, H. (2018). Collagen
from marine biological sources and medical
applications. Chemistry & Biodiversity, 15(5),
e1700557. DOI: 10.1002/cbdv.201700557
Froese, R. & Pauly, D. (2024). FishBase. World Wide
Web electronic publication. www.fishbase.org,
version (06/2024).
- Gorgieva, S. & Kokol, V. (2011). Collagen-vs. gelatinebased biomaterials and their biocompatibility:
review and perspectives. Biomaterials
Applications for Nanomedicine, 2, 17-52.
- Gómez-Guillén, M.C., Turnay, J., Fernández-Dıaz,
M.D., Ulmo, N., Lizarbe, M.A. & Montero, P.
(2002). Structural and physical properties of
gelatin extracted from different marine species: a
comparative study. Food Hydrocolloids, 16(1),
25-34.
- Haas, G. & Steinitz, H. (1947). Erythrean fishes on the
Mediterranean coast of Palestine. Nature,
160(4053), 28-28. DOI: 10.1038/160028b0
- Helrich, K. (1990). AOAC: official methods of analysis
(Volume 1). Journal of the Association of Official
Agricultural Chemists, 1, 237-242.
- Kabakli, F. & Erguden, D. (2022). Age, Growth, and
Mortality of the Redcoat Sargocentron rubrum
(Forsskal, 1775), in Iskenderun Bay, Northeastern
Mediterranean. Thalassas: An International
Journal of Marine Sciences, 38(1), 103-111. DOI:
10.1007/s41208-021-00359-4
- Kaewdang, O., Benjakul, S., Kaewmanee, T. &
Kishimura, H. (2014). Characteristics of
collagens from the swim bladders of yellowfin
tuna (Thunnus albacares). Food Chemistry, 155,
264-270. DOI: 10.1016/j.foodchem.2014.01.076
- Khong, N.M., Yusoff, F.M., Jamilah, B., Basri, M.,
Maznah, I., Chan, K.W. & Nishikawa, J.
(2016). Nutritional composition and total collagen
content of three commercially important edible
jellyfish. Food Chemistry, 196, 953-960.
- Kittiphattanabawon, P., Benjakul, S., Visessanguan,
W., Nagai, T. & Tanaka, M. (2005).
Characterisation of acid-soluble collagen from
skin and bone of bigeye snapper (Priacanthus
tayenus). Food Chemistry, 89(3), 363-372. DOI:
10.1016/j.foodchem.2015.09.094
- Laemmli, U.K. (1970). Cleavage of structural proteins
during the assembly of the head of bacteriophage
T4. Nature, 227(5259), 680-685. DOI:
10.1038/227680a0
- Light, N. & Bailey, A. J. (1985). Collagen cross‐links:
location of pyridinoline in type I collagen. FEBS
Letters, 182(2), 503-508.
- Li, P. & Wu, G. (2018). Roles of dietary glycine, proline,
and hydroxyproline in collagen synthesis and
animal growth. Amino Acids, 50, 29-38. DOI:
10.1007/s00726-017-2490-6
- Li, Z.R., Wang, B., Chi, C.F., Zhang, Q.H., Gong, Y.D.,
Tang, J.J. & Ding, G.F. (2013). Isolation and
characterization of acid soluble collagens and
pepsin soluble collagens from the skin and bone
of Spanish mackerel (Scomberomorous
niphonius). Food Hydrocolloids, 31(1), 103-113.
DOI: 10.1016/j.foodhyd.2012.10.001
- Lim, Y.S., Ok, Y.J., Hwang, S.Y., Kwak, J.Y., & Yoon,
S. (2019). Marine collagen as a promising
biomaterial for biomedical applications. Marine
Drugs, 17(8), 467. DOI: 10.3390/md17080467
- Lu, W.C., Chiu, C.S., Chan, Y.J., Mulio, A.T. & Li, P.H.
(2023). Characterization and biological properties
of marine by-product collagen through
ultrasound-assisted extraction. Aquaculture
Reports, 29, 101514. DOI:
10.1016/j.aqrep.2023.101514
- Meyer, M. (2019). Processing of collagen based
biomaterials and the resulting materials
properties. Biomedical Engineering Online,
18(1), 24. DOI: 10.1186/s12938-019-0647-0
- Muyonga, J.H., Cole, C.G.B. & Duodu, K.G. (2004).
Characterisation of acid soluble collagen from
skins of young and adult Nile perch (Lates
niloticus). Food Chemistry, 85(1), 81-89. DOI:
10.1016/j.foodchem.2003.06.006
- Nagai, T. & Suzuki, N. (2000). Isolation of Collagen from
Fish Waste Material Skin, Bone and Fins. Food
Chemistry, 68(3), 277-281. DOI: 10.1016/S0308-
8146(99)00188-0
- Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N.
& Suzuki, N. (2001). Isolation and
characterisation of collagen from the outer skin
waste material of cuttlefish (Sepia lycidas). Food
Chemistry, 72(4), 425-429. DOI: 10.1016/S0308-
8146(00)00249-1
- Naomi, R., Ridzuan, P.M. & Bahari, H. (2021). Current
insights into collagen type I. Polymers, 13(16),
2642. DOI: 10.3390/polym13162642
- Nasri, M. (2019). Bioactive Peptides from Fish Collagen
Byproducts. In: Simpson, B. K., Aryee, A. N., &
Toldrá, F. (Ed), Byproducts from agriculture and
fisheries: Adding value for food, feed, pharma and
fuels., 309-333p, John Wiley & Sons.
- Ogawa, H., Ueda, T., Aoyama, T., Aronheim, A.,
Nagata, S. & Fukunaga, R. (2003). A
SWI2/SNF2‐type ATPase/helicase protein,
mDomino, interacts with myeloid zinc finger
protein 2A (MZF‐2A) to regulate its
transcriptional activity. Genes to Cells, 8(4), 325-
339. DOI: 10.1046/j.1365-2443.2003.00636.x
- Pal, G.K. & Suresh, P.V. (2016). Sustainable valorisation
of seafood by-products: Recovery of collagen and
development of collagen-based novel functional
food ingredients. Innovative Food Science &
Emerging Technologies, 37, 201-215. DOI:
10.1016/j.ifset.2016.03.015
- Puad, N.M., Koshy, P., Abdullah, H.Z., Idris, M.I. &
Lee, T.C. (2019). Syntheses of hydroxyapatite
from natural sources. Heliyon, 5(5). DOI:
10.1016/j.heliyon.2019.e01588
- Rahman, M.A. (2019). Collagen of extracellular matrix
from marine invertebrates and its medical
applications. Marine Drugs, 17(2), 118. DOI:
10.3390/md17020118
- Randall, J.E. (1998). Revision of the Indo-Pacific
squirrelfishes (Beryciformes: Holocentridae:
Holocentrinae) of the genus Sargocentron, with
description of four new species. Indo-Pac. Fish.,
23, 1-105.
- Rodrigues, C.V., Sousa, R.O., Carvalho, A.C., Alves,
A.L., Marques, C.F., Cerqueira, M.T. & Silva,
T. H. (2023). Potential of Atlantic Codfish
(Gadus morhua) Skin collagen for skincare
biomaterials. Molecules, 28(8), 3394. DOI:
10.3390/molecules28083394
- Schmidt, M.M., Dornelles, R.C.P., Mello, R.O., Kubota,
E.H., Mazutti, M.A., Kempka, A.P. & Demiate,
I.M. (2016). Collagen extraction process.
International Food Research Journal, 23(3), 913-
922.
- Senaratne, L.S., Park, P.J. & Kim, S.K. (2006). Isolation
and characterization of collagen from brown
backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 97(2), 191-197. DOI:
10.1016/j.biortech.2005.02.024
- Sharma, S., Dwivedi, S., Chandra, S., Srivastava, A. &
Vijay, P. (2019). Collagen: A Brief Analysis.
Oral & Maxillofacial Pathology Journal, 10(1),1-
11. DOI: 10.5005/jp-journals-10037-1143
- Sheehy, E.J., Cunniffe, G.M. & O'Brien, F.J. (2018).
Collagen-based biomaterials for tissue
regeneration and repair. In: Barbosa M.A. &
Martins, L. C. M. (Ed), Peptides and proteins as
biomaterials for tissue regeneration and repair,
127-150p, Woodhead Publishing.
- Shenoy, M., Abdul, N.S., Qamar, Z., Al Bahri, B.M., Al
Ghalayini, K.Z.K. & Kakti, A. (2022). Collagen
structure, synthesis, and its applications: A
systematic review. Cureus, 14(5), e24856. DOI:
10.7759/cureus.24856
- Sionkowska, A., Kozłowska, J., Skorupska, M. &
Michalska, M. (2015). Isolation and
characterization of collagen from the skin of
Brama australis. International Journal of
Biological Macromolecules, 80, 605-609. DOI:
10.1016/j.ijbiomac.2015.07.032
- Son, S.A., Shin, E.S., Park, Y.M., Ma, A., Yang, H.,
Kim, S. & Shin, T.S. (2022). Composition of
collagen extracted from the skin of three different
varieties of fish. Journal of the Korean Society of
Food Science and Nutrition, 51(1), 71-81. DOI:
10.3746/jkfn.2022.51.1.71
- Sotelo, G.C., Blanco Comesaña, M., Ramos, P. & Pérez
Martín, R.I. (2016). Characterization of Collagen
from Different Discarded Fish Species of the
West Coast of the Iberian Peninsula. Journal of
Aquatic Food Product Technology. 25(3), 388-
399. DOI: 10.1080/10498850.2013.865283
- Stoilov, I., Starcher, B.C., Mecham, R.P. &
Broekelmann, T.J. (2018). Measurement of
elastin, collagen, and total protein levels in
tissues. Methods in Cell Biology, 43,133-146.
DOI: 10.1016/bs.mcb.2017.08.008
- Taskavak, E. & Bilecenoglu, M. (2001). Length–weight
relationships for 18 Lessepsian (Red Sea)
immigrant fish species from the eastern
Mediterranean coast of Turkey. Journal of the
Marine Biological Association of the United
Kingdom, 81(5), 895-896. DOI:
10.1017/S0025315401004805
- Türker, D., Zengin, K. & Bal, H. (2020). Length-weight
relationships of 11 lessepsian immigrant fish
species caught from Mediterranean coast of
Turkey (Antalya Bay). Acta Aquatica Turcica,
16(2), 301-304. DOI: 10.22392/actaquatr.670648
- Wahyu, Y.I., & Widjanarko, S.B. (2018). Extraction
Optimization And Characterization Of Acid
Soluble Collagen From Milkfish Scales (Chanos
chanos Forskal). Carpathian Journal of Food
Science & Technology, 10(1), 125-135.
- Wu, X., Cai, L., Cao, A., Wang, Y., Li, T. & Li, J.
(2016). Comparative study on acid‐soluble and
pepsin‐soluble collagens from skin and swim
bladder of grass carp (Ctenopharyngodon idella).
Journal of the Science of Food and Agriculture,
96(3), 815-821. DOI: 10.1002/jsfa.7154
- Yousefi, M., Ariffin, F. & Huda, N. (2017). An
alternative source of type I collagen based on byproduct with higher thermal stability. Food
Hydrocolloids, 63, 372-382. DOI:
10.1016/j.foodhyd.2016.09.029
- Yu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J.,
& Ding, G. (2018). Optimization of extraction
conditions and characterization of pepsinsolubilised collagen from skin of giant croaker
(Nibea japonica). Marine Drugs, 16(1), 29. Doi:
10.3390/md16010029
- Zeng, R., Tang, K., Tian, H. & Pei, Y. (2024). Collagen
materials with oriented structure for biomedical
applications. Journal of Polymer Science, 62(6),
998-1019. DOI: 10.1002/pol.20230664