Araştırma Makalesi
BibTex RIS Kaynak Göster

Extraction and Characterisation of Type I Collagen from the Scales of Redcoat Sargocentron rubrum

Yıl 2024, Cilt: 9 Sayı: 4, 616 - 622
https://doi.org/10.35229/jaes.1564496

Öz

Abstract: Collagen, one of the most important biopolymers, is widely used in the food and pharmaceutical industries due to its functional and technological properties. Alien species, especially of Indo-Pacific origin, entering Mediterranean waters can exert pressure on native species and cause ecological and economic effects. In this study, we produced collagen from the scale of Sargocentum rubrum to bring this species to the economy and to reduce the pressure on our infested marine ecosystem as a surplus value. Acid-soluble collagen was extracted; a characteristic sodium dodecyl SDS-PAGE gel electrophoresis profile for type I collagen was obtained from the S. rubrum scales. The yield of collagen extracted from the scales of S. rubrum by the ASC method was calculated as 11.2%. The results of the analyses show that the collagen obtained from S. rubrum scales was Type I collagen with high yields. It has been proved that non-economic alien species as S. rubrum used in our study can be used as an alternative source instead of terrestrial animal collagen. The results obtained show that collagen obtained from S. rubrum scales can be a good alternative source for biomedical and other cosmetic industries.

Destekleyen Kurum

İskenderun Technical University Scientific Research Projects Office

Proje Numarası

2022YP05

Teşekkür

This study was supported by the İskenderun Technical University Scientific Research Projects Office (2022YP05). The authors thank the İskenderun Technical University Scientific Research Projects Office.

Kaynakça

  • Akita, M., Nishikawa, Y., Shigenobu, Y., Ambe, D., Morita, T., Morioka, K. & Adachi, K. (2020). Correlation of proline, hydroxyproline and serine content, denaturation temperature and circular dichroism analysis of type I collagen with the physiological temperature of marine teleosts. Food Chemistry, 329, 126775. DOI: 10.1016/j.foodchem.2020.126775
  • Alemu Reta, B., Murugesh Babu, K. & Tesfaye, T. (2024). Smart and intelligent biomaterials for novel applications–a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 74(2),1-19. DOI: 10.1080/00914037.2024.2316191
  • Alves, A.L., Marques, A.L., Martins, E., Silva, T.H. & Reis, R.L. (2017). Cosmetic potential of marine fish skin collagen. Cosmetics, 4(4), 39.
  • Antoine, F.R., Wei, C.I., Littell, R.C. & Marshall, M.R. (1999). HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. Journal of Agricultural and Food Chemistry, 47(12), 5100-5107. DOI: 10.1021/jf990032+
  • Ampitiya, A.G.D.M., Gonapinuwala, S.T., Fernando, C.A.N. & De Croos, M.D.S.T. (2023). Extraction and characterisation of type I collagen from the skin offcuts generated at the commercial fish processing centres. Journal of Food Science and Technology, 60(2), 484-493. DOI: 10.1007/s13197-022-05630-x
  • Ata, O., Bozdogan, N., Mataraci, C.E., Kumcuoglu, S., Bayram, S.K. & Tavman, S. (2025). Extraction and characterization of valuable compounds from chicken sternal cartilage: Type II collagen and chondroitin sulfate. Food Chemistry, 462, 141023. DOI: 10.1016/j.foodchem.2024.141023
  • Berillis, P. (2015). Marine collagen: Extraction and applications. Research Trends in Biochemistry, Molecular Biology and Microbiology, 1-13.
  • Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S. & Dubruel, P. (2012). A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33(26), 6020-6041. DOI: 10.1016/j.biomaterials.2012.04.050
  • Can, M.F., Başusta, N. & Çekiç, M. (2002). Weightlength relationships for selected fish species of the small-scale fisheries off the south coast of Iskenderun Bay. Turkish Journal of Veterinary & Animal Sciences, 26(5), 1181-1183.
  • Cherim, M., Mustafa, A., Cadar, E., Lupașcu, N., Paris, S. & Sirbu, R. (2019). Collagen sources and areas of use. European Journal of Medicine and Natural Sciences, 2(2), 8-13. DOI: 10.26417/ejis.v4i1.p122-128
  • Chowdhury, S.R., Mh Busra, M.F., Lokanathan, Y., Ng, M.H., Law, J.X., Cletus, U.C. & Binti Haji Idrus, R. (2018). Collagen type I: A versatile biomaterial. Novel Biomaterials for Regenerative Medicine, 1077, 389-414. DOI: 10.1007/978-981- 13-0947-2_21
  • Coppola, D., Oliviero, M., Vitale, G.A., Lauritano, C., D’Ambra, I., Iannace, S. & de Pascale, D. (2020). Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Marine Drugs, 18(4), 214. DOI: 10.3390/md18040214
  • Doğdu, S.A., Turan, C. & Ayas, D. (2019). Isolation and characterization of collagen and gelatin from skin of silver cheeked pufferfish Lagocephalus sceleratus for pharmaceutical and biomedical applications. Natural and Engineering Sciences, 4(3), 308-314. DOI: 10.28978/nesciences.661099
  • Doğdu, S.A., Turan, C., Depci, T. & Ayas, D. (2021). Natural hydroxyapatite obtained from pufferfish teeth for potential dental application. Journal of Ceramic Processing Research, 22(3), 356-361. DOI: 10.36410/jcpr.2021.22.3.356
  • Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E. & Turan, F. (2023). Characterization of long-spıned sea urchın Diadema setosum shell and potential usage areas. Pakistan Journal of Marine Sciences, 32(1), 83-88.
  • Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E., Sangün, K. & Ayas, D. (2024). Hydroxyapatite production and characterization from four pufferfish species teeth. Journal of Ceramic Processing Research, 25(1), 85-91. DOI: 10.36410/jcpr.2024.25.1.85
  • Duan, R., Zhang, J., Du, X., Yao, X. & Konno, K. (2009). Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chemistry, 112(3), 702-706. DOI: 10.1016/j.foodchem.2008.06.020
  • Eastoe, J.E. (1957). The amino acid composition of fish collagen and gelatin. Biochemical Journal, 65(2), 363-368. DOI: 10.1042/bj0650363
  • Felician, F.F., Xia, C., Qi, W. & Xu, H. (2018). Collagen from marine biological sources and medical applications. Chemistry & Biodiversity, 15(5), e1700557. DOI: 10.1002/cbdv.201700557 Froese, R. & Pauly, D. (2024). FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2024).
  • Gorgieva, S. & Kokol, V. (2011). Collagen-vs. gelatinebased biomaterials and their biocompatibility: review and perspectives. Biomaterials Applications for Nanomedicine, 2, 17-52.
  • Gómez-Guillén, M.C., Turnay, J., Fernández-Dıaz, M.D., Ulmo, N., Lizarbe, M.A. & Montero, P. (2002). Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 16(1), 25-34.
  • Haas, G. & Steinitz, H. (1947). Erythrean fishes on the Mediterranean coast of Palestine. Nature, 160(4053), 28-28. DOI: 10.1038/160028b0
  • Helrich, K. (1990). AOAC: official methods of analysis (Volume 1). Journal of the Association of Official Agricultural Chemists, 1, 237-242.
  • Kabakli, F. & Erguden, D. (2022). Age, Growth, and Mortality of the Redcoat Sargocentron rubrum (Forsskal, 1775), in Iskenderun Bay, Northeastern Mediterranean. Thalassas: An International Journal of Marine Sciences, 38(1), 103-111. DOI: 10.1007/s41208-021-00359-4
  • Kaewdang, O., Benjakul, S., Kaewmanee, T. & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry, 155, 264-270. DOI: 10.1016/j.foodchem.2014.01.076
  • Khong, N.M., Yusoff, F.M., Jamilah, B., Basri, M., Maznah, I., Chan, K.W. & Nishikawa, J. (2016). Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chemistry, 196, 953-960.
  • Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T. & Tanaka, M. (2005). Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry, 89(3), 363-372. DOI: 10.1016/j.foodchem.2015.09.094
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. DOI: 10.1038/227680a0
  • Light, N. & Bailey, A. J. (1985). Collagen cross‐links: location of pyridinoline in type I collagen. FEBS Letters, 182(2), 503-508.
  • Li, P. & Wu, G. (2018). Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids, 50, 29-38. DOI: 10.1007/s00726-017-2490-6
  • Li, Z.R., Wang, B., Chi, C.F., Zhang, Q.H., Gong, Y.D., Tang, J.J. & Ding, G.F. (2013). Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocolloids, 31(1), 103-113. DOI: 10.1016/j.foodhyd.2012.10.001
  • Lim, Y.S., Ok, Y.J., Hwang, S.Y., Kwak, J.Y., & Yoon, S. (2019). Marine collagen as a promising biomaterial for biomedical applications. Marine Drugs, 17(8), 467. DOI: 10.3390/md17080467
  • Lu, W.C., Chiu, C.S., Chan, Y.J., Mulio, A.T. & Li, P.H. (2023). Characterization and biological properties of marine by-product collagen through ultrasound-assisted extraction. Aquaculture Reports, 29, 101514. DOI: 10.1016/j.aqrep.2023.101514
  • Meyer, M. (2019). Processing of collagen based biomaterials and the resulting materials properties. Biomedical Engineering Online, 18(1), 24. DOI: 10.1186/s12938-019-0647-0
  • Muyonga, J.H., Cole, C.G.B. & Duodu, K.G. (2004). Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85(1), 81-89. DOI: 10.1016/j.foodchem.2003.06.006
  • Nagai, T. & Suzuki, N. (2000). Isolation of Collagen from Fish Waste Material Skin, Bone and Fins. Food Chemistry, 68(3), 277-281. DOI: 10.1016/S0308- 8146(99)00188-0
  • Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N. & Suzuki, N. (2001). Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chemistry, 72(4), 425-429. DOI: 10.1016/S0308- 8146(00)00249-1
  • Naomi, R., Ridzuan, P.M. & Bahari, H. (2021). Current insights into collagen type I. Polymers, 13(16), 2642. DOI: 10.3390/polym13162642
  • Nasri, M. (2019). Bioactive Peptides from Fish Collagen Byproducts. In: Simpson, B. K., Aryee, A. N., & Toldrá, F. (Ed), Byproducts from agriculture and fisheries: Adding value for food, feed, pharma and fuels., 309-333p, John Wiley & Sons.
  • Ogawa, H., Ueda, T., Aoyama, T., Aronheim, A., Nagata, S. & Fukunaga, R. (2003). A SWI2/SNF2‐type ATPase/helicase protein, mDomino, interacts with myeloid zinc finger protein 2A (MZF‐2A) to regulate its transcriptional activity. Genes to Cells, 8(4), 325- 339. DOI: 10.1046/j.1365-2443.2003.00636.x
  • Pal, G.K. & Suresh, P.V. (2016). Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innovative Food Science & Emerging Technologies, 37, 201-215. DOI: 10.1016/j.ifset.2016.03.015
  • Puad, N.M., Koshy, P., Abdullah, H.Z., Idris, M.I. & Lee, T.C. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5). DOI: 10.1016/j.heliyon.2019.e01588
  • Rahman, M.A. (2019). Collagen of extracellular matrix from marine invertebrates and its medical applications. Marine Drugs, 17(2), 118. DOI: 10.3390/md17020118
  • Randall, J.E. (1998). Revision of the Indo-Pacific squirrelfishes (Beryciformes: Holocentridae: Holocentrinae) of the genus Sargocentron, with description of four new species. Indo-Pac. Fish., 23, 1-105.
  • Rodrigues, C.V., Sousa, R.O., Carvalho, A.C., Alves, A.L., Marques, C.F., Cerqueira, M.T. & Silva, T. H. (2023). Potential of Atlantic Codfish (Gadus morhua) Skin collagen for skincare biomaterials. Molecules, 28(8), 3394. DOI: 10.3390/molecules28083394
  • Schmidt, M.M., Dornelles, R.C.P., Mello, R.O., Kubota, E.H., Mazutti, M.A., Kempka, A.P. & Demiate, I.M. (2016). Collagen extraction process. International Food Research Journal, 23(3), 913- 922.
  • Senaratne, L.S., Park, P.J. & Kim, S.K. (2006). Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 97(2), 191-197. DOI: 10.1016/j.biortech.2005.02.024
  • Sharma, S., Dwivedi, S., Chandra, S., Srivastava, A. & Vijay, P. (2019). Collagen: A Brief Analysis. Oral & Maxillofacial Pathology Journal, 10(1),1- 11. DOI: 10.5005/jp-journals-10037-1143
  • Sheehy, E.J., Cunniffe, G.M. & O'Brien, F.J. (2018). Collagen-based biomaterials for tissue regeneration and repair. In: Barbosa M.A. & Martins, L. C. M. (Ed), Peptides and proteins as biomaterials for tissue regeneration and repair, 127-150p, Woodhead Publishing.
  • Shenoy, M., Abdul, N.S., Qamar, Z., Al Bahri, B.M., Al Ghalayini, K.Z.K. & Kakti, A. (2022). Collagen structure, synthesis, and its applications: A systematic review. Cureus, 14(5), e24856. DOI: 10.7759/cureus.24856
  • Sionkowska, A., Kozłowska, J., Skorupska, M. & Michalska, M. (2015). Isolation and characterization of collagen from the skin of Brama australis. International Journal of Biological Macromolecules, 80, 605-609. DOI: 10.1016/j.ijbiomac.2015.07.032
  • Son, S.A., Shin, E.S., Park, Y.M., Ma, A., Yang, H., Kim, S. & Shin, T.S. (2022). Composition of collagen extracted from the skin of three different varieties of fish. Journal of the Korean Society of Food Science and Nutrition, 51(1), 71-81. DOI: 10.3746/jkfn.2022.51.1.71
  • Sotelo, G.C., Blanco Comesaña, M., Ramos, P. & Pérez Martín, R.I. (2016). Characterization of Collagen from Different Discarded Fish Species of the West Coast of the Iberian Peninsula. Journal of Aquatic Food Product Technology. 25(3), 388- 399. DOI: 10.1080/10498850.2013.865283
  • Stoilov, I., Starcher, B.C., Mecham, R.P. & Broekelmann, T.J. (2018). Measurement of elastin, collagen, and total protein levels in tissues. Methods in Cell Biology, 43,133-146. DOI: 10.1016/bs.mcb.2017.08.008
  • Taskavak, E. & Bilecenoglu, M. (2001). Length–weight relationships for 18 Lessepsian (Red Sea) immigrant fish species from the eastern Mediterranean coast of Turkey. Journal of the Marine Biological Association of the United Kingdom, 81(5), 895-896. DOI: 10.1017/S0025315401004805
  • Türker, D., Zengin, K. & Bal, H. (2020). Length-weight relationships of 11 lessepsian immigrant fish species caught from Mediterranean coast of Turkey (Antalya Bay). Acta Aquatica Turcica, 16(2), 301-304. DOI: 10.22392/actaquatr.670648
  • Wahyu, Y.I., & Widjanarko, S.B. (2018). Extraction Optimization And Characterization Of Acid Soluble Collagen From Milkfish Scales (Chanos chanos Forskal). Carpathian Journal of Food Science & Technology, 10(1), 125-135.
  • Wu, X., Cai, L., Cao, A., Wang, Y., Li, T. & Li, J. (2016). Comparative study on acid‐soluble and pepsin‐soluble collagens from skin and swim bladder of grass carp (Ctenopharyngodon idella). Journal of the Science of Food and Agriculture, 96(3), 815-821. DOI: 10.1002/jsfa.7154
  • Yousefi, M., Ariffin, F. & Huda, N. (2017). An alternative source of type I collagen based on byproduct with higher thermal stability. Food Hydrocolloids, 63, 372-382. DOI: 10.1016/j.foodhyd.2016.09.029
  • Yu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J., & Ding, G. (2018). Optimization of extraction conditions and characterization of pepsinsolubilised collagen from skin of giant croaker (Nibea japonica). Marine Drugs, 16(1), 29. Doi: 10.3390/md16010029
  • Zeng, R., Tang, K., Tian, H. & Pei, Y. (2024). Collagen materials with oriented structure for biomedical applications. Journal of Polymer Science, 62(6), 998-1019. DOI: 10.1002/pol.20230664

Naylon balığı Sargocentron rubrum Pullarından Tip I Kolajen Ekstraksiyonu ve Karakterizasyonu

Yıl 2024, Cilt: 9 Sayı: 4, 616 - 622
https://doi.org/10.35229/jaes.1564496

Öz

Öz: En önemli biyopolimerlerden biri olan kolajen, fonksiyonel ve teknolojik özellikleri nedeniyle gıda ve ilaç endüstrilerinde yaygın olarak kullanılmaktadır. Akdeniz sularına giren özellikle Hint-Pasifik kökenli yabancı türler, yerli türler üzerinde baskı oluşturarak ekolojik ve ekonomik etkilere neden olabilir. Bu çalışmada, bu türleri ekonomiye kazandırmak ve istila edilmiş deniz ekosistemimiz üzerindeki baskıyı azaltmak için Sargocentum rubrum pulundan kolajen üretimi gerçekleştirdik. Kolajen asitte çözünür kolajen yöntemi ile ekstrakte edildi; S. rubrum pullarından tip I kolajen için karakteristik bir sodyum dodesil SDS-PAGE jel elektroforez profili elde edildi. ASC yöntemi ile S. rubrum pullarından ekstrakte edilen kolajen verimi %11.2 olarak hesaplandı. Analiz sonuçları, S. rubrum pullarından elde edilen kolajenin yüksek verime sahip Tip I kolajen olduğunu göstermektedir. Çalışmamızda kullanılan S. rubrum gibi ekonomik olmayan yabancı türlerin karasal hayvan kolajeni yerine alternatif bir kaynak olarak kullanılabileceği kanıtlanmıştır. Elde edilen sonuçlar, S. rubrum pullarından elde edilen kolajenin biyomedikal ve diğer kozmetik endüstrileri için iyi bir alternatif kaynak olabileceğini göstermektedir.

Proje Numarası

2022YP05

Kaynakça

  • Akita, M., Nishikawa, Y., Shigenobu, Y., Ambe, D., Morita, T., Morioka, K. & Adachi, K. (2020). Correlation of proline, hydroxyproline and serine content, denaturation temperature and circular dichroism analysis of type I collagen with the physiological temperature of marine teleosts. Food Chemistry, 329, 126775. DOI: 10.1016/j.foodchem.2020.126775
  • Alemu Reta, B., Murugesh Babu, K. & Tesfaye, T. (2024). Smart and intelligent biomaterials for novel applications–a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 74(2),1-19. DOI: 10.1080/00914037.2024.2316191
  • Alves, A.L., Marques, A.L., Martins, E., Silva, T.H. & Reis, R.L. (2017). Cosmetic potential of marine fish skin collagen. Cosmetics, 4(4), 39.
  • Antoine, F.R., Wei, C.I., Littell, R.C. & Marshall, M.R. (1999). HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. Journal of Agricultural and Food Chemistry, 47(12), 5100-5107. DOI: 10.1021/jf990032+
  • Ampitiya, A.G.D.M., Gonapinuwala, S.T., Fernando, C.A.N. & De Croos, M.D.S.T. (2023). Extraction and characterisation of type I collagen from the skin offcuts generated at the commercial fish processing centres. Journal of Food Science and Technology, 60(2), 484-493. DOI: 10.1007/s13197-022-05630-x
  • Ata, O., Bozdogan, N., Mataraci, C.E., Kumcuoglu, S., Bayram, S.K. & Tavman, S. (2025). Extraction and characterization of valuable compounds from chicken sternal cartilage: Type II collagen and chondroitin sulfate. Food Chemistry, 462, 141023. DOI: 10.1016/j.foodchem.2024.141023
  • Berillis, P. (2015). Marine collagen: Extraction and applications. Research Trends in Biochemistry, Molecular Biology and Microbiology, 1-13.
  • Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S. & Dubruel, P. (2012). A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33(26), 6020-6041. DOI: 10.1016/j.biomaterials.2012.04.050
  • Can, M.F., Başusta, N. & Çekiç, M. (2002). Weightlength relationships for selected fish species of the small-scale fisheries off the south coast of Iskenderun Bay. Turkish Journal of Veterinary & Animal Sciences, 26(5), 1181-1183.
  • Cherim, M., Mustafa, A., Cadar, E., Lupașcu, N., Paris, S. & Sirbu, R. (2019). Collagen sources and areas of use. European Journal of Medicine and Natural Sciences, 2(2), 8-13. DOI: 10.26417/ejis.v4i1.p122-128
  • Chowdhury, S.R., Mh Busra, M.F., Lokanathan, Y., Ng, M.H., Law, J.X., Cletus, U.C. & Binti Haji Idrus, R. (2018). Collagen type I: A versatile biomaterial. Novel Biomaterials for Regenerative Medicine, 1077, 389-414. DOI: 10.1007/978-981- 13-0947-2_21
  • Coppola, D., Oliviero, M., Vitale, G.A., Lauritano, C., D’Ambra, I., Iannace, S. & de Pascale, D. (2020). Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Marine Drugs, 18(4), 214. DOI: 10.3390/md18040214
  • Doğdu, S.A., Turan, C. & Ayas, D. (2019). Isolation and characterization of collagen and gelatin from skin of silver cheeked pufferfish Lagocephalus sceleratus for pharmaceutical and biomedical applications. Natural and Engineering Sciences, 4(3), 308-314. DOI: 10.28978/nesciences.661099
  • Doğdu, S.A., Turan, C., Depci, T. & Ayas, D. (2021). Natural hydroxyapatite obtained from pufferfish teeth for potential dental application. Journal of Ceramic Processing Research, 22(3), 356-361. DOI: 10.36410/jcpr.2021.22.3.356
  • Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E. & Turan, F. (2023). Characterization of long-spıned sea urchın Diadema setosum shell and potential usage areas. Pakistan Journal of Marine Sciences, 32(1), 83-88.
  • Doğdu, S.A., Turan, C., Depci, T., Bahçeci, E., Sangün, K. & Ayas, D. (2024). Hydroxyapatite production and characterization from four pufferfish species teeth. Journal of Ceramic Processing Research, 25(1), 85-91. DOI: 10.36410/jcpr.2024.25.1.85
  • Duan, R., Zhang, J., Du, X., Yao, X. & Konno, K. (2009). Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chemistry, 112(3), 702-706. DOI: 10.1016/j.foodchem.2008.06.020
  • Eastoe, J.E. (1957). The amino acid composition of fish collagen and gelatin. Biochemical Journal, 65(2), 363-368. DOI: 10.1042/bj0650363
  • Felician, F.F., Xia, C., Qi, W. & Xu, H. (2018). Collagen from marine biological sources and medical applications. Chemistry & Biodiversity, 15(5), e1700557. DOI: 10.1002/cbdv.201700557 Froese, R. & Pauly, D. (2024). FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2024).
  • Gorgieva, S. & Kokol, V. (2011). Collagen-vs. gelatinebased biomaterials and their biocompatibility: review and perspectives. Biomaterials Applications for Nanomedicine, 2, 17-52.
  • Gómez-Guillén, M.C., Turnay, J., Fernández-Dıaz, M.D., Ulmo, N., Lizarbe, M.A. & Montero, P. (2002). Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 16(1), 25-34.
  • Haas, G. & Steinitz, H. (1947). Erythrean fishes on the Mediterranean coast of Palestine. Nature, 160(4053), 28-28. DOI: 10.1038/160028b0
  • Helrich, K. (1990). AOAC: official methods of analysis (Volume 1). Journal of the Association of Official Agricultural Chemists, 1, 237-242.
  • Kabakli, F. & Erguden, D. (2022). Age, Growth, and Mortality of the Redcoat Sargocentron rubrum (Forsskal, 1775), in Iskenderun Bay, Northeastern Mediterranean. Thalassas: An International Journal of Marine Sciences, 38(1), 103-111. DOI: 10.1007/s41208-021-00359-4
  • Kaewdang, O., Benjakul, S., Kaewmanee, T. & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry, 155, 264-270. DOI: 10.1016/j.foodchem.2014.01.076
  • Khong, N.M., Yusoff, F.M., Jamilah, B., Basri, M., Maznah, I., Chan, K.W. & Nishikawa, J. (2016). Nutritional composition and total collagen content of three commercially important edible jellyfish. Food Chemistry, 196, 953-960.
  • Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T. & Tanaka, M. (2005). Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry, 89(3), 363-372. DOI: 10.1016/j.foodchem.2015.09.094
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. DOI: 10.1038/227680a0
  • Light, N. & Bailey, A. J. (1985). Collagen cross‐links: location of pyridinoline in type I collagen. FEBS Letters, 182(2), 503-508.
  • Li, P. & Wu, G. (2018). Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids, 50, 29-38. DOI: 10.1007/s00726-017-2490-6
  • Li, Z.R., Wang, B., Chi, C.F., Zhang, Q.H., Gong, Y.D., Tang, J.J. & Ding, G.F. (2013). Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocolloids, 31(1), 103-113. DOI: 10.1016/j.foodhyd.2012.10.001
  • Lim, Y.S., Ok, Y.J., Hwang, S.Y., Kwak, J.Y., & Yoon, S. (2019). Marine collagen as a promising biomaterial for biomedical applications. Marine Drugs, 17(8), 467. DOI: 10.3390/md17080467
  • Lu, W.C., Chiu, C.S., Chan, Y.J., Mulio, A.T. & Li, P.H. (2023). Characterization and biological properties of marine by-product collagen through ultrasound-assisted extraction. Aquaculture Reports, 29, 101514. DOI: 10.1016/j.aqrep.2023.101514
  • Meyer, M. (2019). Processing of collagen based biomaterials and the resulting materials properties. Biomedical Engineering Online, 18(1), 24. DOI: 10.1186/s12938-019-0647-0
  • Muyonga, J.H., Cole, C.G.B. & Duodu, K.G. (2004). Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85(1), 81-89. DOI: 10.1016/j.foodchem.2003.06.006
  • Nagai, T. & Suzuki, N. (2000). Isolation of Collagen from Fish Waste Material Skin, Bone and Fins. Food Chemistry, 68(3), 277-281. DOI: 10.1016/S0308- 8146(99)00188-0
  • Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N. & Suzuki, N. (2001). Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chemistry, 72(4), 425-429. DOI: 10.1016/S0308- 8146(00)00249-1
  • Naomi, R., Ridzuan, P.M. & Bahari, H. (2021). Current insights into collagen type I. Polymers, 13(16), 2642. DOI: 10.3390/polym13162642
  • Nasri, M. (2019). Bioactive Peptides from Fish Collagen Byproducts. In: Simpson, B. K., Aryee, A. N., & Toldrá, F. (Ed), Byproducts from agriculture and fisheries: Adding value for food, feed, pharma and fuels., 309-333p, John Wiley & Sons.
  • Ogawa, H., Ueda, T., Aoyama, T., Aronheim, A., Nagata, S. & Fukunaga, R. (2003). A SWI2/SNF2‐type ATPase/helicase protein, mDomino, interacts with myeloid zinc finger protein 2A (MZF‐2A) to regulate its transcriptional activity. Genes to Cells, 8(4), 325- 339. DOI: 10.1046/j.1365-2443.2003.00636.x
  • Pal, G.K. & Suresh, P.V. (2016). Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innovative Food Science & Emerging Technologies, 37, 201-215. DOI: 10.1016/j.ifset.2016.03.015
  • Puad, N.M., Koshy, P., Abdullah, H.Z., Idris, M.I. & Lee, T.C. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5). DOI: 10.1016/j.heliyon.2019.e01588
  • Rahman, M.A. (2019). Collagen of extracellular matrix from marine invertebrates and its medical applications. Marine Drugs, 17(2), 118. DOI: 10.3390/md17020118
  • Randall, J.E. (1998). Revision of the Indo-Pacific squirrelfishes (Beryciformes: Holocentridae: Holocentrinae) of the genus Sargocentron, with description of four new species. Indo-Pac. Fish., 23, 1-105.
  • Rodrigues, C.V., Sousa, R.O., Carvalho, A.C., Alves, A.L., Marques, C.F., Cerqueira, M.T. & Silva, T. H. (2023). Potential of Atlantic Codfish (Gadus morhua) Skin collagen for skincare biomaterials. Molecules, 28(8), 3394. DOI: 10.3390/molecules28083394
  • Schmidt, M.M., Dornelles, R.C.P., Mello, R.O., Kubota, E.H., Mazutti, M.A., Kempka, A.P. & Demiate, I.M. (2016). Collagen extraction process. International Food Research Journal, 23(3), 913- 922.
  • Senaratne, L.S., Park, P.J. & Kim, S.K. (2006). Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 97(2), 191-197. DOI: 10.1016/j.biortech.2005.02.024
  • Sharma, S., Dwivedi, S., Chandra, S., Srivastava, A. & Vijay, P. (2019). Collagen: A Brief Analysis. Oral & Maxillofacial Pathology Journal, 10(1),1- 11. DOI: 10.5005/jp-journals-10037-1143
  • Sheehy, E.J., Cunniffe, G.M. & O'Brien, F.J. (2018). Collagen-based biomaterials for tissue regeneration and repair. In: Barbosa M.A. & Martins, L. C. M. (Ed), Peptides and proteins as biomaterials for tissue regeneration and repair, 127-150p, Woodhead Publishing.
  • Shenoy, M., Abdul, N.S., Qamar, Z., Al Bahri, B.M., Al Ghalayini, K.Z.K. & Kakti, A. (2022). Collagen structure, synthesis, and its applications: A systematic review. Cureus, 14(5), e24856. DOI: 10.7759/cureus.24856
  • Sionkowska, A., Kozłowska, J., Skorupska, M. & Michalska, M. (2015). Isolation and characterization of collagen from the skin of Brama australis. International Journal of Biological Macromolecules, 80, 605-609. DOI: 10.1016/j.ijbiomac.2015.07.032
  • Son, S.A., Shin, E.S., Park, Y.M., Ma, A., Yang, H., Kim, S. & Shin, T.S. (2022). Composition of collagen extracted from the skin of three different varieties of fish. Journal of the Korean Society of Food Science and Nutrition, 51(1), 71-81. DOI: 10.3746/jkfn.2022.51.1.71
  • Sotelo, G.C., Blanco Comesaña, M., Ramos, P. & Pérez Martín, R.I. (2016). Characterization of Collagen from Different Discarded Fish Species of the West Coast of the Iberian Peninsula. Journal of Aquatic Food Product Technology. 25(3), 388- 399. DOI: 10.1080/10498850.2013.865283
  • Stoilov, I., Starcher, B.C., Mecham, R.P. & Broekelmann, T.J. (2018). Measurement of elastin, collagen, and total protein levels in tissues. Methods in Cell Biology, 43,133-146. DOI: 10.1016/bs.mcb.2017.08.008
  • Taskavak, E. & Bilecenoglu, M. (2001). Length–weight relationships for 18 Lessepsian (Red Sea) immigrant fish species from the eastern Mediterranean coast of Turkey. Journal of the Marine Biological Association of the United Kingdom, 81(5), 895-896. DOI: 10.1017/S0025315401004805
  • Türker, D., Zengin, K. & Bal, H. (2020). Length-weight relationships of 11 lessepsian immigrant fish species caught from Mediterranean coast of Turkey (Antalya Bay). Acta Aquatica Turcica, 16(2), 301-304. DOI: 10.22392/actaquatr.670648
  • Wahyu, Y.I., & Widjanarko, S.B. (2018). Extraction Optimization And Characterization Of Acid Soluble Collagen From Milkfish Scales (Chanos chanos Forskal). Carpathian Journal of Food Science & Technology, 10(1), 125-135.
  • Wu, X., Cai, L., Cao, A., Wang, Y., Li, T. & Li, J. (2016). Comparative study on acid‐soluble and pepsin‐soluble collagens from skin and swim bladder of grass carp (Ctenopharyngodon idella). Journal of the Science of Food and Agriculture, 96(3), 815-821. DOI: 10.1002/jsfa.7154
  • Yousefi, M., Ariffin, F. & Huda, N. (2017). An alternative source of type I collagen based on byproduct with higher thermal stability. Food Hydrocolloids, 63, 372-382. DOI: 10.1016/j.foodhyd.2016.09.029
  • Yu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J., & Ding, G. (2018). Optimization of extraction conditions and characterization of pepsinsolubilised collagen from skin of giant croaker (Nibea japonica). Marine Drugs, 16(1), 29. Doi: 10.3390/md16010029
  • Zeng, R., Tang, K., Tian, H. & Pei, Y. (2024). Collagen materials with oriented structure for biomedical applications. Journal of Polymer Science, 62(6), 998-1019. DOI: 10.1002/pol.20230664
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz ve Nehir Ağzı Ekolojisi , Balıkçılık Yönetimi, Su Ürünleri Teknolojileri
Bölüm Makaleler
Yazarlar

Servet Ahmet Doğdu 0000-0003-2939-5838

Cemal Turan 0000-0001-9584-0261

Tolga Depci 0000-0001-9562-8068

Proje Numarası 2022YP05
Erken Görünüm Tarihi 17 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 28 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 4

Kaynak Göster

APA Doğdu, S. A., Turan, C., & Depci, T. (2024). Extraction and Characterisation of Type I Collagen from the Scales of Redcoat Sargocentron rubrum. Journal of Anatolian Environmental and Animal Sciences, 9(4), 616-622. https://doi.org/10.35229/jaes.1564496


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS