Research Article
BibTex RIS Cite

Havalimanlarında Seviye 5 Karbon Akreditasyonu Odağında Sürdürülebilirlik Uygulamaları: Royal Schiphol Grup Örneği

Year 2025, Volume: 10 Issue: 5, 625 - 637, 30.09.2025
https://doi.org/10.35229/jaes.1689542

Abstract

Havacılık sektörü, karbon emisyonlarını azaltma ve sürdürülebilirlik hedeflerine ulaşma konusunda, zorlukları ve beraberinde yenilikçi çözüm fırsatlarını bir arada bulundurmaktadır. Havalimanlarının doğrudan kontrolü dışında kalan karbon emisyonlarının yüksekliği, sürdürülebilirlik stratejilerinin yalnızca operasyonel süreçlerle sınırlı kalmamasını; tedarik zinciri, havayolları, yolcular ve yerel toplulukları da kapsayan çok paydaşlı ve entegre karbon yönetimi yaklaşımları geliştirilmesini gerekli kılmaktadır. Bu çalışmada, Royal Schiphol Grup örneği üzerinden havalimanlarında uygulanan sürdürülebilirlik politikaları incelenmekte; Airport Carbon Accreditation (ACA) programının seviyeleri ve özellikle sınırlı sayıda havalimanının ulaştığı Seviye 5’in gereklilikleri ortaya konmaktadır. Schiphol Havalimanı’nın bu seviyeye erişim sürecinde benimsediği çevresel ve yönetsel uygulamalar, nitel araştırma yöntemlerinden doküman analiziyle incelenmektedir. Elde edilen bulgular, 2021–2024 yılları arasında yolcu sayısında %162 oranında artış yaşanmasına rağmen Scope 1 emisyonlarının %22 azaltıldığını ve böylece yolcu başına düşen karbon emisyonunun anlamlı ölçüde düşürüldüğünü ortaya koymaktadır. Bu durum, operasyonel verimliliğin sürdürülebilirlik hedeflerine doğrudan katkı sunduğunu göstermektedir. Ayrıca, karbon emisyonlarının azaltılmasına yönelik dijital yönetim sistemleri, yapay zekâ uygulamaları, yenilenebilir enerji kullanımı, sürdürülebilir havacılık yakıtları ve paydaş iş birlikleri gibi bütüncül yaklaşımların etkinliğine dikkat çekilmektedir. Schiphol Group bünyesindeki havalimanlarında uygulanan yenilenebilir enerji politikaları, atık yönetimi, sürdürülebilir ulaşım çözümleri, tedarik zinciri entegrasyonu ve dijitalleşme stratejilerinin, karbon yönetiminde kapsamlı bir dönüşüm sağladığı görülmektedir. Çalışma genelinde ulaşılan sonuçlar, karbon yönetiminin yalnızca teknik çözümlerle değil; stratejik ve yönetsel yaklaşımlarla desteklendiğinde daha etkili ve sürdürülebilir sonuçlar doğurabildiğini ortaya koymaktadır. Ayrıca çevresel sürdürülebilirliğin, ekonomik büyüme ile çelişmediği; aksine teknolojik yenilikler ve kurumsal stratejilerle uyumlu şekilde ilerleyebileceği vurgulanmaktadır.

References

  • ACA. (2024). Level 5: Transformation. Airport Carbon Accreditation. https://www.airportcarbonaccreditation.org/about/7-levels-of-accreditation/level-5/
  • ACI. (2024). Airport Carbon Accreditation Annual Report. Airports Council International. https://www.aci-europe.org/
  • ACA. (2025). Updated framework for Level 5 accreditation: Absolute emissions reduction. Airport Council International.
  • ACI. (2023). Airport Carbon Accreditation Application Manual (Version 14). Airport Carbon Accreditation. https://www.airportcarbonaccreditation.org/wp-content/uploads/2023/12/Airport-Carbon-Accreditation-Application-Manual-14-FINAL-01112023.pdf
  • Ammoury, M., & Salman, B. (2024). Advancing Sustainability and Resilience of Airports through Deployment of New Technologies in the Aftermath of the COVID-19 Pandemic. ASCE OPEN: Multidisciplinary Journal of Civil Engineering, 2(1), 04024006.
  • Andreopoulou, Z., & Gkantalidou, S. (2023). Sustainable practices and green policies in airports: the case of airport of Thessaloniki Makedonia. In IOP Conference Series: Earth and Environmental Science (Vol. 1196, No. 1, p. 012052). IOP Publishing. DOI: 10.1088/1755-1315/1196/1/012052
  • Atkins. (2023). First embodied carbon tool for airport terminals developed. IATA. https://www.iata.org/en/pressroom/2023-releases/2023-07-17-01/
  • Babuder, D., Lapko, Y., Trucco, P., & Taghavi, R. (2024). Impact of emerging sustainable aircraft technologies on the existing operating ecosystem. Journal of Air Transport Management, 115, 102524. DOI: 10.1016/j.jairtraman.2023.102524
  • Bahman, N. (2023). Airport sustainability through life cycle assessments: A systematic literature review. Sustainable Development, 31(3), 1268-1277.
  • Baxter, G. (2023). Towards Carbon Neutral Airport Operations Through the Use of Renewable Energy Sources: The Case of Chhatrapati Shivaji Maharaj and Indira Gandhi International Airports, India. International Journal of Environment, Agriculture and Biotechnology, 8(2), 084-100. DOI: 10.22161/ijeab.82.9
  • Baxter, G. (2022). Sustainable Airport Water Management: The Case of Hong Kong International Airport. International Journal of Environment, Agriculture and Biotechnology, 7(5), 016-032. DOI: 10.22161/ijeab.75.3
  • British Airways. (2024). British Airways outlines investment in sustainable ground equipment. Business Traveller. https://www.businesstraveller.com/business-travel/2024/03/19/british-airways-outlines-investment-in-sustainable-ground-equipment/
  • Budd, L., & Ison, S. (2021). Public utility or private asset? The evolution of UK airport ownership. Case Studies on Transport Policy, 9(1), 212-218.
  • Caswell, M. (2024). British Airways outlines investment in sustainable ground equipment. Business Traveller. https://www.businesstraveller.com/business-travel/2024/03/19/british-airways-outlines-investment-in-sustainable-ground-equipment/
  • CDP. (2023). Strengthening the chain: Why Scope 3 action needs to be faster, bolder and more widespread. CDP Worldwide. https://www.cdp.net/en/research/global-reports/supply-chain-report-2023
  • Chang, Y. H., & Yeh, C. H. (2016). Managing corporate social responsibility strategies of airports: The case of Taiwan’s Taoyuan International Airport Corporation. Transportation Research Part A: Policy and Practice, 92, 338-348.
  • Changi Airport. (2022). Changi Airport Group. (2022). Changi Airport sustainability report, 2022
  • De Groot, M. (2024). How can a balanced ecosystem of technology, collaboration and innovation build greener airports?” The case study of Groningen Airport Eelde. Journal of Airport Management, 18(3), 309-316. DOI: 10.69554/gwjj4841
  • Doğan, M.E. (2018). Küresel Kamusal Mal Kapsamındaki Hava Kirliliğine Neden Olan Etkenlerin Havacılık Sektörü Odaklı İncelenmesi. Gazi Üniversitesi Sosyal Bilimler Dergisi, 5(13), 142-156.
  • Dube, K., & Nhamo, G. (2019). Climate change and the aviation sector: A focus on the Victoria Falls tourism route. Environmental Development, 29, 5-15.
  • Elkington, J., & Rowlands, I. H. (1999). Cannibals with forks: The triple bottom line of 21st century business. Alternatives Journal, 25(4), 42.
  • Ferreira, D., Baltazar, M.E., & Santos, L.(2024) Developing a comprehensive framework for assessing airports’ environmental sustainability. Sustainability, 16, 6651. DOI: 10.3390/su16156651
  • Fraport. (2024). Climate protection; Sustainable for the future - Frankfurt Airport - Terminal 3. Retrieved April 25, 2025, from https://www.fraport.com/en/sustainability/environment-and-climate/climate-protection.html
  • GMR Engineering & Management Services. (2024). The impact of electric ground support equipment (GSE) on airport sustainability and efficiency. https://www.gmrgems.com/blogs/the-impact-of-electric-ground-support-equipment-on-airportgmrgems.com
  • Goh, H.H., Suo, W., Liang, X., Zhang, D., Dai, W., Kurniawan, T.A., & Goh, K.C. (2024). An adaptive energy management strategy for airports to achieve carbon neutrality by 2050 via waste, wind, and solar power. Frontiers in Energy Research, 12, 1365650. DOI: 10.3389/fenrg.2024.1365650
  • Göçmen, D. (2024). Havalimanlarında inovasyon uygulamalarının karşılaştırılması. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 7(2), 127-145. DOI: 10.51513/jitsa.1436536
  • Gürsel, S., Demir, R., & Rodoplu, H. (2023). The effect of digitalisation on sustainability and smart airport. International Journal of Sustainable Aviation, 9(1), 26-40.
  • Heathrow Airport Limited. (2023). A year of progress recorded for Heathrow’s sustainability strategy. Heathrow Media Centre.
  • Heathrow Airport. (2022). Heathrow's Net Zero Plan. https://www.heathrow.com/content/dam/heathrow/web/common/documents/company/heathrow-2-0-sustainability/futher-reading/Heathrow%20Net%20Zero%20Plan%20FINAL.pdf https://mediacentre.heathrow.com/pressrelease/detail/14991
  • ICAO. (2023). Annual Report of the Council. International Civil Aviation Organization. https://www.icao.int/about-icao/Pages/annual-reports.aspx
  • IEA. (2023). Aviation: Tracking Clean Energy Progress. International Energy Agency. https://www.iea.org/energy-system/transport/aviation
  • Kirchherr, J., Reike, D., & Hekkert, M. (2018). Conceptualizing the circular economy. Resources, Conservation and Recycling, 127, 221-232. DOI: 10.1016/j.resconrec.2017.09.005
  • Korba, P., Koščáková, M., Főző, L., & Sekelová, I. (2022). Current state and possible challenges in the development of green airports. In 2022 New Trends in Civil Aviation (NTCA) (pp. 191-197). IEEE.
  • Lee, D.S., Fahey, D.W., Skowron, A., Allen, M.R., Burkhardt, U., Chen, Q., ..., & Wilcox, L.J. (2020). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244, 117834. DOI: 10.1016/j.atmosenv.2020.117834
  • Li, Y., & He, Y. (2024). Unraveling Korea’s energy challenge: The consequences of carbon dioxide emissions and energy use on economic sustainability. Sustainability, 16(5), 2074). DOI: 10.3390/su17030855
  • Lyudmila, C. (2024). Decarbonization With The Help of Artificial Intelligence-one of The Prıorıtıes of International Civil Aviation. Contemporary Issues in Artificial Intelligence, 1. DOI: 10.69635/ciai.2025.8
  • Marcellin, F. (2025). Schiphol’s flight path to a circular future. Airport Technology. https://www.airport-technology.com/features/schiphols-flight-path-to-a-circular-future/
  • Mazraani, G., & Tucci, M. (2025). The role of environmental management systems (EMS) in driving organizational development and environmental sustainability. American Journal of Environment and Climate, 4(1). DOI: 10.54536/ajec.v4i1.3748
  • Mcguinness, J. (2024). Embedding net zero ambition at Dublin Airport: A world to connect and a future to protect. Journal of Airport Management, 18(4), 357-366.
  • Miller, I., & Rutledge, A.S. (2025). Airport electrification: Funding, microgrids, and sustainability. Journal of Aviation Technology and Engineering. DOI: 10.7771/2159-6670.1314
  • Morch, A., Laveneziana, L., Erga, I., Restaldo, G., Odisio, M., & Chiaramonti, D. (2024). Electrification of airports and air transport: Airports becoming integrated energy systems. In 2024 20th International Conference on the European Energy Market (EEM) (pp. 1-6). IEEE.
  • Okereke, C., & Russel, D. (2010). Regulatory Pressure and Competitive Dynamics: Carbon Management Strategies of UK Energy-Intensive Companies. California Management Review, 52(4), 100-124. DOI: 10.1525/cmr.2010.52.4.100
  • QSI. (2024). ACA – Airport Carbon Accreditation. Erişim adresi: https://www.qsi.com.tr/hizmetler/aca-airport-carbon/ 10.03.2025
  • Ritchie, H. (2024). “What share of global CO₂ emissions come from aviation?” Our World in Data. https://ourworldindata.org/global-aviation-emissions

Sustainability Practices at Airports within the Scope of Level 5 Carbon Accreditation: The Case of Royal Schiphol Group

Year 2025, Volume: 10 Issue: 5, 625 - 637, 30.09.2025
https://doi.org/10.35229/jaes.1689542

Abstract

The aviation sector simultaneously encompasses challenges and innovative solution opportunities in achieving carbon emission reduction and sustainability goals. The high volume of carbon emissions beyond the direct control of airports necessitates that sustainability strategies extend beyond operational processes and involve the development of multi-stakeholder and integrated carbon management approaches that include supply chains, airlines, passengers and local communities. This study examines the sustainability policies implemented at airports through the example of the Royal Schiphol Group, highlighting the levels of the Airport Carbon Accreditation (ACA) program, with particular emphasis on the requirements of Level 5, which only a limited number of airports have achieved. The environmental and managerial practices adopted by Schiphol Airport in the process of attaining this level are analyzed through document analysis, one of the qualitative research methods. The findings reveal that despite a 162% increase in passenger numbers between 2021 and 2024, Scope 1 emissions were reduced by 22%, leading to a significant decrease in per-passenger carbon emissions. This demonstrates that operational efficiency contributes directly to sustainability goals. Additionally, the effectiveness of holistic approaches such as digital management systems, artificial intelligence applications, renewable energy use, sustainable aviation fuels and stakeholder collaborations in reducing carbon emissions is emphasized. It is observed that practices implemented at airports operated by the Schiphol Group-such as renewable energy policies, waste management, sustainable transportation solutions, supply chain integration and digitalization strategies-have led to a comprehensive transformation in carbon management. The overall results of the study indicate that carbon management becomes more effective and sustainable when supported not only by technical solutions but also by strategic and managerial approaches. Furthermore, it is highlighted that environmental sustainability does not conflict with economic growth; on the contrary, it can progress in harmony with technological innovations and institutional strategies.

References

  • ACA. (2024). Level 5: Transformation. Airport Carbon Accreditation. https://www.airportcarbonaccreditation.org/about/7-levels-of-accreditation/level-5/
  • ACI. (2024). Airport Carbon Accreditation Annual Report. Airports Council International. https://www.aci-europe.org/
  • ACA. (2025). Updated framework for Level 5 accreditation: Absolute emissions reduction. Airport Council International.
  • ACI. (2023). Airport Carbon Accreditation Application Manual (Version 14). Airport Carbon Accreditation. https://www.airportcarbonaccreditation.org/wp-content/uploads/2023/12/Airport-Carbon-Accreditation-Application-Manual-14-FINAL-01112023.pdf
  • Ammoury, M., & Salman, B. (2024). Advancing Sustainability and Resilience of Airports through Deployment of New Technologies in the Aftermath of the COVID-19 Pandemic. ASCE OPEN: Multidisciplinary Journal of Civil Engineering, 2(1), 04024006.
  • Andreopoulou, Z., & Gkantalidou, S. (2023). Sustainable practices and green policies in airports: the case of airport of Thessaloniki Makedonia. In IOP Conference Series: Earth and Environmental Science (Vol. 1196, No. 1, p. 012052). IOP Publishing. DOI: 10.1088/1755-1315/1196/1/012052
  • Atkins. (2023). First embodied carbon tool for airport terminals developed. IATA. https://www.iata.org/en/pressroom/2023-releases/2023-07-17-01/
  • Babuder, D., Lapko, Y., Trucco, P., & Taghavi, R. (2024). Impact of emerging sustainable aircraft technologies on the existing operating ecosystem. Journal of Air Transport Management, 115, 102524. DOI: 10.1016/j.jairtraman.2023.102524
  • Bahman, N. (2023). Airport sustainability through life cycle assessments: A systematic literature review. Sustainable Development, 31(3), 1268-1277.
  • Baxter, G. (2023). Towards Carbon Neutral Airport Operations Through the Use of Renewable Energy Sources: The Case of Chhatrapati Shivaji Maharaj and Indira Gandhi International Airports, India. International Journal of Environment, Agriculture and Biotechnology, 8(2), 084-100. DOI: 10.22161/ijeab.82.9
  • Baxter, G. (2022). Sustainable Airport Water Management: The Case of Hong Kong International Airport. International Journal of Environment, Agriculture and Biotechnology, 7(5), 016-032. DOI: 10.22161/ijeab.75.3
  • British Airways. (2024). British Airways outlines investment in sustainable ground equipment. Business Traveller. https://www.businesstraveller.com/business-travel/2024/03/19/british-airways-outlines-investment-in-sustainable-ground-equipment/
  • Budd, L., & Ison, S. (2021). Public utility or private asset? The evolution of UK airport ownership. Case Studies on Transport Policy, 9(1), 212-218.
  • Caswell, M. (2024). British Airways outlines investment in sustainable ground equipment. Business Traveller. https://www.businesstraveller.com/business-travel/2024/03/19/british-airways-outlines-investment-in-sustainable-ground-equipment/
  • CDP. (2023). Strengthening the chain: Why Scope 3 action needs to be faster, bolder and more widespread. CDP Worldwide. https://www.cdp.net/en/research/global-reports/supply-chain-report-2023
  • Chang, Y. H., & Yeh, C. H. (2016). Managing corporate social responsibility strategies of airports: The case of Taiwan’s Taoyuan International Airport Corporation. Transportation Research Part A: Policy and Practice, 92, 338-348.
  • Changi Airport. (2022). Changi Airport Group. (2022). Changi Airport sustainability report, 2022
  • De Groot, M. (2024). How can a balanced ecosystem of technology, collaboration and innovation build greener airports?” The case study of Groningen Airport Eelde. Journal of Airport Management, 18(3), 309-316. DOI: 10.69554/gwjj4841
  • Doğan, M.E. (2018). Küresel Kamusal Mal Kapsamındaki Hava Kirliliğine Neden Olan Etkenlerin Havacılık Sektörü Odaklı İncelenmesi. Gazi Üniversitesi Sosyal Bilimler Dergisi, 5(13), 142-156.
  • Dube, K., & Nhamo, G. (2019). Climate change and the aviation sector: A focus on the Victoria Falls tourism route. Environmental Development, 29, 5-15.
  • Elkington, J., & Rowlands, I. H. (1999). Cannibals with forks: The triple bottom line of 21st century business. Alternatives Journal, 25(4), 42.
  • Ferreira, D., Baltazar, M.E., & Santos, L.(2024) Developing a comprehensive framework for assessing airports’ environmental sustainability. Sustainability, 16, 6651. DOI: 10.3390/su16156651
  • Fraport. (2024). Climate protection; Sustainable for the future - Frankfurt Airport - Terminal 3. Retrieved April 25, 2025, from https://www.fraport.com/en/sustainability/environment-and-climate/climate-protection.html
  • GMR Engineering & Management Services. (2024). The impact of electric ground support equipment (GSE) on airport sustainability and efficiency. https://www.gmrgems.com/blogs/the-impact-of-electric-ground-support-equipment-on-airportgmrgems.com
  • Goh, H.H., Suo, W., Liang, X., Zhang, D., Dai, W., Kurniawan, T.A., & Goh, K.C. (2024). An adaptive energy management strategy for airports to achieve carbon neutrality by 2050 via waste, wind, and solar power. Frontiers in Energy Research, 12, 1365650. DOI: 10.3389/fenrg.2024.1365650
  • Göçmen, D. (2024). Havalimanlarında inovasyon uygulamalarının karşılaştırılması. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 7(2), 127-145. DOI: 10.51513/jitsa.1436536
  • Gürsel, S., Demir, R., & Rodoplu, H. (2023). The effect of digitalisation on sustainability and smart airport. International Journal of Sustainable Aviation, 9(1), 26-40.
  • Heathrow Airport Limited. (2023). A year of progress recorded for Heathrow’s sustainability strategy. Heathrow Media Centre.
  • Heathrow Airport. (2022). Heathrow's Net Zero Plan. https://www.heathrow.com/content/dam/heathrow/web/common/documents/company/heathrow-2-0-sustainability/futher-reading/Heathrow%20Net%20Zero%20Plan%20FINAL.pdf https://mediacentre.heathrow.com/pressrelease/detail/14991
  • ICAO. (2023). Annual Report of the Council. International Civil Aviation Organization. https://www.icao.int/about-icao/Pages/annual-reports.aspx
  • IEA. (2023). Aviation: Tracking Clean Energy Progress. International Energy Agency. https://www.iea.org/energy-system/transport/aviation
  • Kirchherr, J., Reike, D., & Hekkert, M. (2018). Conceptualizing the circular economy. Resources, Conservation and Recycling, 127, 221-232. DOI: 10.1016/j.resconrec.2017.09.005
  • Korba, P., Koščáková, M., Főző, L., & Sekelová, I. (2022). Current state and possible challenges in the development of green airports. In 2022 New Trends in Civil Aviation (NTCA) (pp. 191-197). IEEE.
  • Lee, D.S., Fahey, D.W., Skowron, A., Allen, M.R., Burkhardt, U., Chen, Q., ..., & Wilcox, L.J. (2020). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric Environment, 244, 117834. DOI: 10.1016/j.atmosenv.2020.117834
  • Li, Y., & He, Y. (2024). Unraveling Korea’s energy challenge: The consequences of carbon dioxide emissions and energy use on economic sustainability. Sustainability, 16(5), 2074). DOI: 10.3390/su17030855
  • Lyudmila, C. (2024). Decarbonization With The Help of Artificial Intelligence-one of The Prıorıtıes of International Civil Aviation. Contemporary Issues in Artificial Intelligence, 1. DOI: 10.69635/ciai.2025.8
  • Marcellin, F. (2025). Schiphol’s flight path to a circular future. Airport Technology. https://www.airport-technology.com/features/schiphols-flight-path-to-a-circular-future/
  • Mazraani, G., & Tucci, M. (2025). The role of environmental management systems (EMS) in driving organizational development and environmental sustainability. American Journal of Environment and Climate, 4(1). DOI: 10.54536/ajec.v4i1.3748
  • Mcguinness, J. (2024). Embedding net zero ambition at Dublin Airport: A world to connect and a future to protect. Journal of Airport Management, 18(4), 357-366.
  • Miller, I., & Rutledge, A.S. (2025). Airport electrification: Funding, microgrids, and sustainability. Journal of Aviation Technology and Engineering. DOI: 10.7771/2159-6670.1314
  • Morch, A., Laveneziana, L., Erga, I., Restaldo, G., Odisio, M., & Chiaramonti, D. (2024). Electrification of airports and air transport: Airports becoming integrated energy systems. In 2024 20th International Conference on the European Energy Market (EEM) (pp. 1-6). IEEE.
  • Okereke, C., & Russel, D. (2010). Regulatory Pressure and Competitive Dynamics: Carbon Management Strategies of UK Energy-Intensive Companies. California Management Review, 52(4), 100-124. DOI: 10.1525/cmr.2010.52.4.100
  • QSI. (2024). ACA – Airport Carbon Accreditation. Erişim adresi: https://www.qsi.com.tr/hizmetler/aca-airport-carbon/ 10.03.2025
  • Ritchie, H. (2024). “What share of global CO₂ emissions come from aviation?” Our World in Data. https://ourworldindata.org/global-aviation-emissions
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Environmental Assessment and Monitoring, Environmental Management (Other)
Journal Section Articles
Authors

Didem Göçmen 0000-0002-3939-441X

Early Pub Date September 15, 2025
Publication Date September 30, 2025
Submission Date May 2, 2025
Acceptance Date August 22, 2025
Published in Issue Year 2025 Volume: 10 Issue: 5

Cite

APA Göçmen, D. (2025). Havalimanlarında Seviye 5 Karbon Akreditasyonu Odağında Sürdürülebilirlik Uygulamaları: Royal Schiphol Grup Örneği. Journal of Anatolian Environmental and Animal Sciences, 10(5), 625-637. https://doi.org/10.35229/jaes.1689542


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS