Research Article
BibTex RIS Cite

The relationship between urbanization and land surface temperature at the district level in İstanbul (2003–2024): An analysis using MODIS data

Year 2025, Volume: 2 Issue: 2, 113 - 123, 20.12.2025
https://doi.org/10.65652/jag.1789295

Abstract

In urban areas, the relationship between land surface temperature (LST) and building density generates spatial gradients across a hierarchy ranging from sub-administrative units to the metropolitan scale, along core–periphery, coastal–inland, and lowland–elevation contrasts, and is further shaped by the impervious surface ratio, continuity of green spaces, and local topo-climatic conditions (e.g., valley/wind corridors). In this study, LST changes over 2003–2024 are analyzed at temporal and spatial scales. Using MODIS satellite data, thematic maps and regression analyses are employed to evaluate temperature trends at the district level, with the European and Anatolian sides examined separately to obtain comparative findings. For each district, a simple linear regression (OLS) time trend was fitted to the annual mean LST series for 2003–2024, and slopes were reported in °C per year. The results indicate a clear increase in surface temperatures over time, which is directly associated with urbanization dynamics—particularly high building density, loss of green areas, and the expansion of impervious surfaces. Districts such as Esenyurt, Küçükçekmece, Avcılar, Bağcılar, Pendik, and Maltepe exhibit a strengthening tendency of heat accumulation, whereas Şile, Çatalca, the Belgrad Forest, and forested zones along the Black Sea coast maintain relatively low LST values. Overall, with urban expansion, LST increases at a regional scale, underscoring the critical importance of sustainable urban planning, green-space conservation, and climate-friendly urban policies in curbing LST increases.

References

  • Abowarda, A. S., Bai, L., Zhang, C., Long, D., Li, X., Huang, Q., & Sun, Z. (2021). Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sensing of Environment, 255, 112301. https://doi.org/10.1016/j.rse.2021.112301
  • Aliağaoğlu, A., & Uğur, A. (2021). Şehir coğrafyası (8. baskı). Nobel Yayıncılık.
  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859
  • Avcı, S. (1993). Türkiye’de şehir ve şehirli nüfusun dağılışı. Türk Coğrafya Dergisi, 28, 249–269.
  • Avcı, S. (2003). Gelişimi ve sorunları açısından Türkiye’de şehirleşme. In Sırrı Erinç Sempozyumu: Genişletilmiş bildiri özetleri (ss. 218–225). İstanbul.
  • Ayanlade, A., Diya, M. I., Babatimehin, O., & Jegede, M. (2021). Variations in urban land surface temperature intensity over selected cities. Scientific Reports, 11, 20552. https://doi.org/10.1038/s41598-021-99693-z
  • Busato, F., Lazzarin, R. M., & Noro, M. (2014). Three years of study of the urban heat island in Padua: Experimental results. Sustainable Cities and Society, 10, 251–258.
  • Carter, H. (1995). The study of urban geography (4th ed.). Arnold.
  • Cheval, S., Amihaesei, V. A., Chitu, Z., Dumitrescu, A., Falcescu, V., Irașoc, A., Micu, D., Mihulet, E., Ontel, I., Paraschiv, M. G., & Tudose, N. C. (2024). A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management, 44, 100603.
  • Cigerci, H., Balcik, F. B., Sekertekin, A., & Kahya, C. (2024). Unveiling Istanbul’s city dynamics: Spatiotemporal hotspot analysis of vegetation, settlement, and surface urban heat islands. Sustainability, 16(14), 5981. https://doi.org/10.3390/su16145981
  • Coşkun, H. (2024). An ecological dilemma: Novel sustainable ideas for Istanbul. City, Territory and Architecture, 11, 28.
  • Corbane, C., Syrris, V., Sabo, F., Politis, P., Melchiorri, M., Pesaresi, M., Soille, P., & Kemper, T. (2021). Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery. Neural Computing and Applications, 33(12), 6697–6720.
  • Dervişoğlu, A., Şekertekin, A., Kuşak, L., & Yalçın, M. (2023). Investigation of the efficiency of satellite-derived LST data in comparison with meteorological station measurements in Istanbul. Atmosphere, 14(4), 644. https://doi.org/10.3390/atmos14040644
  • Emiroğlu, M. (1981). Türkiye’de son sayımlar ve kentleşme olayının boyutları. Coğrafya Araştırmaları Dergisi, 10, 43–82.
  • Gray, J., Sulla-Menashe, D., & Friedl, M. A. (2019). User guide to Collection 6 MODIS Land Cover Dynamics (MCD12Q2) product. NASA EOSDIS Land Processes DAAC.
  • Karadağ, A. (2009). Kentsel ekoloji: Kentsel çevre analizlerinde coğrafi yaklaşım. Ege Coğrafya Dergisi, 18(1–2), 31–47.
  • Land Processes Distributed Active Archive Center (LP DAAC). (2021). MODIS/Aqua land surface temperature/emissivity daily L3 global 1 km SIN grid, Version 6.1 (MYD11A1.061). NASA EOSDIS. https://doi.org/10.5067/MODIS/MYD11A1.061
  • Leconte, F., Bouyer, J., Claverie, R., & Pétrissans, M. (2015). Using local climate zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Building and Environment, 83, 39–49.
  • Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37.
  • Liu, L., Lin, Y., Liu, J., Wang, L., Wang, D., Shui, T., Wu, Q. (2017). Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Building and Environment, 117, 191–207.
  • Liu, T., Zhou, C., Zhang, H., Huang, B., Xu, Y., Lin, L., et al. (2021). Ambient temperature and years of life lost: A national study in China. The Innovation, 2(1), 100072. https://doi.org/10.1016/j.xinn.2020.100072
  • Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., Kakarla, A., Paganini, M., & Strano, E. (2020). Outlining where humans live: The World Settlement Footprint 2015. Scientific Data, 7(1), 242.
  • NourEldeen, N., Mao, K., Yuan, Z., Shen, X., Xu, T., & Qin, Z. (2020). Analysis of the spatiotemporal change in land surface temperature for a long-term sequence in Africa (2003–2017). Remote Sensing, 12(3), 488.
  • Pedersen, T. L. (2025). patchwork: The Composer of Plots (Version 1.3.2) [R package]. Comprehensive R Archive Network (CRAN).
  • Peng, J., Ma, J., Liu, Q., Liu, Y., Hu, Y. N., Li, Y., & Yue, Y. (2018). Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Science of the Total Environment, 635, 487-497.
  • Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottlé, C., Bréon, F.-M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46(2), 696–703. https://doi.org/10.1021/es2030438
  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components. Annual Review of Ecology and Systematics, 32, 127–157.
  • Sharma, R. C., Hara, K., Hirayama, H., Harada, I., Hasegawa, D., Tomita, M., … Tateishi, R. (2017). Production of multi-features driven nationwide vegetation physiognomic map and comparison to MODIS land cover type product. Advances in Remote Sensing, 6(1), 54–72.
  • Shi, H., Xian, G., Auch, R., Gallo, K., & Zhou, Q. (2021). Urban heat island and its regional impacts using remotely sensed thermal data—A review of recent developments and methodology. Land, 10(8), 867.
  • Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. P., Cihlar, J., Teillet, P., et al. (2007). The 1 km resolution global data set: Needs of the International Geosphere Biosphere Programme. International Journal of Remote Sensing, 15(17), 3417–3441. https://doi.org/10.1080/01431169408954338
  • Tümertekin, E. (1973). Türkiye’de şehirleşme ve şehirsel fonksiyonlar. İstanbul Üniversitesi Yayınları.
  • Türkiye İstatistik Kurumu (TÜİK). (2023a). Adrese dayalı nüfus kayıt sistemi sonuçları, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684
  • Türkiye İstatistik Kurumu (TÜİK). (2023b). İl ve ilçe sınırları veri seti. TÜİK.
  • Ünal, Y. S., Yürük Sonuç, C., İncecik, S., Topçu, H. S., Diren-Üstün, D. H. & Temizöz, H. P. (2020). Investigation of urban heat island intensity in Istanbul. Theoretical and Applied Climatology, 139, 175–190. https://doi.org/10.1007/s00704-019-02953-2
  • Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465.
  • Vijith, H., & Dodge-Wan, D. (2020). Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sensing Applications: Society and Environment, 18, 100311.
  • Wan, Z. (2014). New refinements and validation of the Collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140, 36–45.
  • Wan, Z. (2019). MODIS Collection 6.1 (C61) product user guide (MOD11). LP DAAC.
  • Wan, Z., Hook, S., & Hulley, G. (2021). MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V061 [Data set]. NASA Land Processes Distributed Active Archive Center (LP DAAC). https://doi.org/10.5067/MODIS/MYD11A1.061
  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
  • While, A., & Whitehead, M. (2013). Cities, urbanization and climate change. Urban Studies, 50(7), 1325–1331. https://doi.org/10.1177/0042098013480963
  • Wickham, H. (2016). Data analysis. In ggplot2: elegant graphics for data analysis (pp. 189-201). Cham: Springer international publishing.
  • Wilson, J. S., Clay, M., Martin, E., Stuckey, D., & Vedder-Risch, K. (2003). Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sensing of Environment, 86(3), 303–321.
  • Yuan, F., & Bauer, M. E. (2007). Comparison of NDVI and percent impervious surface as indicators of surface urban heat island effects. Remote Sensing of Environment, 106(3), 375–386.
  • Zhang, L., Nikolopoulou, M., Guo, S., & Song, D. (2022). Impact of LCZs spatial pattern on urban heat island: A case study in Wuhan, China. Building and Environment, 226, 109785.

İstanbul’da 2003–2024 yılları arasında ilçe bazlı yapılaşma ve yüzey sıcaklığı ilişkisi: MODIS verileri ile bir analiz

Year 2025, Volume: 2 Issue: 2, 113 - 123, 20.12.2025
https://doi.org/10.65652/jag.1789295

Abstract

Kentsel alanlarda arazi yüzey sıcaklığı (Land Surface Temperature, LST) ile yapılaşma yoğunluğu arasındaki ilişki, alt-idari birimden metropol ölçeğine uzanan hiyerarşide; çekirdek–çeper, kıyı–iç kesim ve alçak alan–yükselti kuşağı karşıtlıkları boyunca, ayrıca geçirimsiz yüzey oranı, yeşil alan sürekliliği ve yerel topo-klimatik koşullar (ör. vadi/rüzgâr koridorları) tarafından belirgin şekilde şekillenen mekânsal gradyanlar üretmektedir. Bu çalışma kapsamında, 2003–2024 yılları arasındaki LST değişimleri zamansal ve mekânsal düzeyde analiz edilmiştir. MODIS uydu verilerine dayalı tematik haritalar ve regresyon analizleri aracılığıyla, sıcaklık eğilimleri ilçe ölçeğinde değerlendirilmiş; Avrupa ve Anadolu yakaları ayrı ayrı ele alınarak karşılaştırmalı bulgular elde edilmiştir. Avrupa ve Anadolu yakaları ayrı ayrı ele alınarak karşılaştırmalı bulgular elde edilmiştir. Bu kapsamda, her ilçe için 2003–2024 dönemine ait yıllık ortalama LST serisi üzerinde basit doğrusal regresyon (OLS) ile zaman eğilimi uygulanmış, eğimler °C/yıl cinsinden hesaplanmıştır. Sonuçlar, yüzey sıcaklıklarında yıllar içinde belirgin bir artış olduğunu; bu artışın özellikle yapı yoğunluğu, yeşil alan kaybı ve geçirimsiz yüzeylerin genişlemesi gibi kentleşme dinamikleriyle doğrudan ilişkili olduğunu göstermektedir. Esenyurt, Küçükçekmece, Avcılar, Bağcılar, Pendik ve Maltepe gibi ilçelerde ısı birikimi eğiliminin güçlendiği gözlemlenirken; Şile, Çatalca, Belgrad Ormanı ve Karadeniz kıyısındaki ormanlık alanlarda görece düşük LST değerlerinin korunduğu tespit edilmiştir. Genel olarak, kentsel yayılma ile birlikte LST değerleri bölgesel ölçekte yükselmekte; bu durum sürdürülebilir kentsel planlama, yeşil alanların korunması ve iklim dostu kent politikalarının LST artışlarını sınırlamak açısından kritik olduğunu ortaya koymaktadır.

References

  • Abowarda, A. S., Bai, L., Zhang, C., Long, D., Li, X., Huang, Q., & Sun, Z. (2021). Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sensing of Environment, 255, 112301. https://doi.org/10.1016/j.rse.2021.112301
  • Aliağaoğlu, A., & Uğur, A. (2021). Şehir coğrafyası (8. baskı). Nobel Yayıncılık.
  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859
  • Avcı, S. (1993). Türkiye’de şehir ve şehirli nüfusun dağılışı. Türk Coğrafya Dergisi, 28, 249–269.
  • Avcı, S. (2003). Gelişimi ve sorunları açısından Türkiye’de şehirleşme. In Sırrı Erinç Sempozyumu: Genişletilmiş bildiri özetleri (ss. 218–225). İstanbul.
  • Ayanlade, A., Diya, M. I., Babatimehin, O., & Jegede, M. (2021). Variations in urban land surface temperature intensity over selected cities. Scientific Reports, 11, 20552. https://doi.org/10.1038/s41598-021-99693-z
  • Busato, F., Lazzarin, R. M., & Noro, M. (2014). Three years of study of the urban heat island in Padua: Experimental results. Sustainable Cities and Society, 10, 251–258.
  • Carter, H. (1995). The study of urban geography (4th ed.). Arnold.
  • Cheval, S., Amihaesei, V. A., Chitu, Z., Dumitrescu, A., Falcescu, V., Irașoc, A., Micu, D., Mihulet, E., Ontel, I., Paraschiv, M. G., & Tudose, N. C. (2024). A systematic review of urban heat island and heat waves research (1991–2022). Climate Risk Management, 44, 100603.
  • Cigerci, H., Balcik, F. B., Sekertekin, A., & Kahya, C. (2024). Unveiling Istanbul’s city dynamics: Spatiotemporal hotspot analysis of vegetation, settlement, and surface urban heat islands. Sustainability, 16(14), 5981. https://doi.org/10.3390/su16145981
  • Coşkun, H. (2024). An ecological dilemma: Novel sustainable ideas for Istanbul. City, Territory and Architecture, 11, 28.
  • Corbane, C., Syrris, V., Sabo, F., Politis, P., Melchiorri, M., Pesaresi, M., Soille, P., & Kemper, T. (2021). Convolutional neural networks for global human settlements mapping from Sentinel-2 satellite imagery. Neural Computing and Applications, 33(12), 6697–6720.
  • Dervişoğlu, A., Şekertekin, A., Kuşak, L., & Yalçın, M. (2023). Investigation of the efficiency of satellite-derived LST data in comparison with meteorological station measurements in Istanbul. Atmosphere, 14(4), 644. https://doi.org/10.3390/atmos14040644
  • Emiroğlu, M. (1981). Türkiye’de son sayımlar ve kentleşme olayının boyutları. Coğrafya Araştırmaları Dergisi, 10, 43–82.
  • Gray, J., Sulla-Menashe, D., & Friedl, M. A. (2019). User guide to Collection 6 MODIS Land Cover Dynamics (MCD12Q2) product. NASA EOSDIS Land Processes DAAC.
  • Karadağ, A. (2009). Kentsel ekoloji: Kentsel çevre analizlerinde coğrafi yaklaşım. Ege Coğrafya Dergisi, 18(1–2), 31–47.
  • Land Processes Distributed Active Archive Center (LP DAAC). (2021). MODIS/Aqua land surface temperature/emissivity daily L3 global 1 km SIN grid, Version 6.1 (MYD11A1.061). NASA EOSDIS. https://doi.org/10.5067/MODIS/MYD11A1.061
  • Leconte, F., Bouyer, J., Claverie, R., & Pétrissans, M. (2015). Using local climate zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Building and Environment, 83, 39–49.
  • Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37.
  • Liu, L., Lin, Y., Liu, J., Wang, L., Wang, D., Shui, T., Wu, Q. (2017). Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Building and Environment, 117, 191–207.
  • Liu, T., Zhou, C., Zhang, H., Huang, B., Xu, Y., Lin, L., et al. (2021). Ambient temperature and years of life lost: A national study in China. The Innovation, 2(1), 100072. https://doi.org/10.1016/j.xinn.2020.100072
  • Marconcini, M., Metz-Marconcini, A., Üreyen, S., Palacios-Lopez, D., Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., Kakarla, A., Paganini, M., & Strano, E. (2020). Outlining where humans live: The World Settlement Footprint 2015. Scientific Data, 7(1), 242.
  • NourEldeen, N., Mao, K., Yuan, Z., Shen, X., Xu, T., & Qin, Z. (2020). Analysis of the spatiotemporal change in land surface temperature for a long-term sequence in Africa (2003–2017). Remote Sensing, 12(3), 488.
  • Pedersen, T. L. (2025). patchwork: The Composer of Plots (Version 1.3.2) [R package]. Comprehensive R Archive Network (CRAN).
  • Peng, J., Ma, J., Liu, Q., Liu, Y., Hu, Y. N., Li, Y., & Yue, Y. (2018). Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Science of the Total Environment, 635, 487-497.
  • Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottlé, C., Bréon, F.-M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46(2), 696–703. https://doi.org/10.1021/es2030438
  • Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components. Annual Review of Ecology and Systematics, 32, 127–157.
  • Sharma, R. C., Hara, K., Hirayama, H., Harada, I., Hasegawa, D., Tomita, M., … Tateishi, R. (2017). Production of multi-features driven nationwide vegetation physiognomic map and comparison to MODIS land cover type product. Advances in Remote Sensing, 6(1), 54–72.
  • Shi, H., Xian, G., Auch, R., Gallo, K., & Zhou, Q. (2021). Urban heat island and its regional impacts using remotely sensed thermal data—A review of recent developments and methodology. Land, 10(8), 867.
  • Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J. P., Cihlar, J., Teillet, P., et al. (2007). The 1 km resolution global data set: Needs of the International Geosphere Biosphere Programme. International Journal of Remote Sensing, 15(17), 3417–3441. https://doi.org/10.1080/01431169408954338
  • Tümertekin, E. (1973). Türkiye’de şehirleşme ve şehirsel fonksiyonlar. İstanbul Üniversitesi Yayınları.
  • Türkiye İstatistik Kurumu (TÜİK). (2023a). Adrese dayalı nüfus kayıt sistemi sonuçları, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2023-49684
  • Türkiye İstatistik Kurumu (TÜİK). (2023b). İl ve ilçe sınırları veri seti. TÜİK.
  • Ünal, Y. S., Yürük Sonuç, C., İncecik, S., Topçu, H. S., Diren-Üstün, D. H. & Temizöz, H. P. (2020). Investigation of urban heat island intensity in Istanbul. Theoretical and Applied Climatology, 139, 175–190. https://doi.org/10.1007/s00704-019-02953-2
  • Vancutsem, C., Ceccato, P., Dinku, T., & Connor, S. J. (2010). Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114(2), 449–465.
  • Vijith, H., & Dodge-Wan, D. (2020). Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sensing Applications: Society and Environment, 18, 100311.
  • Wan, Z. (2014). New refinements and validation of the Collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment, 140, 36–45.
  • Wan, Z. (2019). MODIS Collection 6.1 (C61) product user guide (MOD11). LP DAAC.
  • Wan, Z., Hook, S., & Hulley, G. (2021). MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V061 [Data set]. NASA Land Processes Distributed Active Archive Center (LP DAAC). https://doi.org/10.5067/MODIS/MYD11A1.061
  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005
  • While, A., & Whitehead, M. (2013). Cities, urbanization and climate change. Urban Studies, 50(7), 1325–1331. https://doi.org/10.1177/0042098013480963
  • Wickham, H. (2016). Data analysis. In ggplot2: elegant graphics for data analysis (pp. 189-201). Cham: Springer international publishing.
  • Wilson, J. S., Clay, M., Martin, E., Stuckey, D., & Vedder-Risch, K. (2003). Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sensing of Environment, 86(3), 303–321.
  • Yuan, F., & Bauer, M. E. (2007). Comparison of NDVI and percent impervious surface as indicators of surface urban heat island effects. Remote Sensing of Environment, 106(3), 375–386.
  • Zhang, L., Nikolopoulou, M., Guo, S., & Song, D. (2022). Impact of LCZs spatial pattern on urban heat island: A case study in Wuhan, China. Building and Environment, 226, 109785.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Remote Sensing
Journal Section Research Article
Authors

Büşra Eraslan 0000-0003-1822-2368

Submission Date September 22, 2025
Acceptance Date December 6, 2025
Early Pub Date December 12, 2025
Publication Date December 20, 2025
Published in Issue Year 2025 Volume: 2 Issue: 2

Cite

APA Eraslan, B. (2025). İstanbul’da 2003–2024 yılları arasında ilçe bazlı yapılaşma ve yüzey sıcaklığı ilişkisi: MODIS verileri ile bir analiz. Journal of Anatolian Geography, 2(2), 113-123. https://doi.org/10.65652/jag.1789295
AMA 1.Eraslan B. İstanbul’da 2003–2024 yılları arasında ilçe bazlı yapılaşma ve yüzey sıcaklığı ilişkisi: MODIS verileri ile bir analiz. JAG. 2025;2(2):113-123. doi:10.65652/jag.1789295
Chicago Eraslan, Büşra. 2025. “İstanbul’da 2003–2024 Yılları Arasında Ilçe Bazlı Yapılaşma Ve Yüzey Sıcaklığı Ilişkisi: MODIS Verileri Ile Bir Analiz”. Journal of Anatolian Geography 2 (2): 113-23. https://doi.org/10.65652/jag.1789295.
EndNote Eraslan B (December 1, 2025) İstanbul’da 2003–2024 yılları arasında ilçe bazlı yapılaşma ve yüzey sıcaklığı ilişkisi: MODIS verileri ile bir analiz. Journal of Anatolian Geography 2 2 113–123.
IEEE [1]B. Eraslan, “İstanbul’da 2003–2024 yılları arasında ilçe bazlı yapılaşma ve yüzey sıcaklığı ilişkisi: MODIS verileri ile bir analiz”, JAG, vol. 2, no. 2, pp. 113–123, Dec. 2025, doi: 10.65652/jag.1789295.
ISNAD Eraslan, Büşra. “İstanbul’da 2003–2024 Yılları Arasında Ilçe Bazlı Yapılaşma Ve Yüzey Sıcaklığı Ilişkisi: MODIS Verileri Ile Bir Analiz”. Journal of Anatolian Geography 2/2 (December 1, 2025): 113-123. https://doi.org/10.65652/jag.1789295.
JAMA 1.Eraslan B. İstanbul’da 2003–2024 yılları arasında ilçe bazlı yapılaşma ve yüzey sıcaklığı ilişkisi: MODIS verileri ile bir analiz. JAG. 2025;2:113–123.
MLA Eraslan, Büşra. “İstanbul’da 2003–2024 Yılları Arasında Ilçe Bazlı Yapılaşma Ve Yüzey Sıcaklığı Ilişkisi: MODIS Verileri Ile Bir Analiz”. Journal of Anatolian Geography, vol. 2, no. 2, Dec. 2025, pp. 113-2, doi:10.65652/jag.1789295.
Vancouver 1.Eraslan B. İstanbul’da 2003–2024 yılları arasında ilçe bazlı yapılaşma ve yüzey sıcaklığı ilişkisi: MODIS verileri ile bir analiz. JAG [Internet]. 2025 Dec. 1;2(2):113-2. Available from: https://izlik.org/JA49HW76XL

Content of this journal is licensed under  https://creativecommons.org/licenses/by-sa/4.0/deed.en

31700