BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 1 - 10, 01.01.2018

Abstract

References

  • B. Altay and F. Ba³ar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1)(2007), 632 645.
  • C. Ayd n and F. Ba³ar, On the new sequence spaces which include the spaces c0and c, Hokkaido Math. J. 33(1)(2004), 1 16.
  • F. Ba³ar, A note on the triangle limitation methods, F rat Üniv. Fen Müh. Bil. Dergisi, 5 (1) (1993), 113-117.
  • F. Ba³ar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
  • J. Boos, Classical and Modern Methods in Summability, Oxford University Press. New York, Oxford, 2000.
  • M. Buntinas, Convergent and bounded Cesàro sections in FK-spaces, Math. Zeitschr., 121 (1971), 191-200.
  • M. Buntinas, On sectionally dense summability elds, Math. Zeitschr., 132 (1973), 141-149.
  • M. Buntinas, On Toeplitz sections in sequence spaces, Math. Proc. Camb. Phil. Soc., 78 (1975), 451-460. [9] . Da gadur, On Some subspaces of an FK space, Mathematical Communications, 7 (2002), 15-20.
  • R. Devos, Combinations of distinguished subsets and conullity, Math. Zeitschr., 192 (1986), 447-451. [11] D. J. H. Garling, The β- and γ-duality of sequence spaces, Proc. Camb. Phil. Soc., 63 (Jan. 1967), 963-981.
  • D. J. H. Garling, On topological sequence spaces, Proc. Camb. Phil. Soc., 63 (1967), 997-1019. [13] G. Goes and S. Goes, Sequences of bounded variation and sequences of fourier coe cients. I, Math. Zeitschr.,118(1970), 93-102.
  • G. Goes, Summan von FK-räumen funktionale abschnittskonvergenz und umkehrsatz, Tohoku. Math. J., 26(1974), 487-504.
  • E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997), 187 196.
  • A. Wilansky, Functional Analysis, Blaisdell Press, 1964.
  • A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw Hill, New York, 1978.
  • A. Wilansky, Summability Through Functional Analysis, North-Holland, Amsterdam, 1984.
  • K. Zeller, Allgemeine eigenschaften von limitierungsverfahren, Math. Zeitschr., 53 (1951), 463-487. Current address: *Yüzüncüy l Üniversitesi, E gitim Fakültesi, Matematik Bölümü, 65080/Van

ON SOME DISTINGUISHED SUBSPACES AND RELATIONSHIP BETWEEN DUALS

Year 2018, Volume: 1 Issue: 1, 1 - 10, 01.01.2018

Abstract

In this paper, we observe some new spaces to obtain new β- and γtype duality of a sequence space λ, related to the some sequence spaces. Beforethis we give some new distinguished subspaces of an F K space obtained by anoperator of Ayd n and Ba³ar [2], which is stronger than common C- Cesàro operator. We also give some structural theorems and inclusions for these distinguishedsubspaces. Finally we prove some theorems related to the f-, ar- and ar- duality ofa sequence space λ like Goes [14] and Buntinas [8]. These theorems are importantsb to decade the duality of a sequence space in summability theory and topologicalsequence spaces theory

References

  • B. Altay and F. Ba³ar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1)(2007), 632 645.
  • C. Ayd n and F. Ba³ar, On the new sequence spaces which include the spaces c0and c, Hokkaido Math. J. 33(1)(2004), 1 16.
  • F. Ba³ar, A note on the triangle limitation methods, F rat Üniv. Fen Müh. Bil. Dergisi, 5 (1) (1993), 113-117.
  • F. Ba³ar, Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012.
  • J. Boos, Classical and Modern Methods in Summability, Oxford University Press. New York, Oxford, 2000.
  • M. Buntinas, Convergent and bounded Cesàro sections in FK-spaces, Math. Zeitschr., 121 (1971), 191-200.
  • M. Buntinas, On sectionally dense summability elds, Math. Zeitschr., 132 (1973), 141-149.
  • M. Buntinas, On Toeplitz sections in sequence spaces, Math. Proc. Camb. Phil. Soc., 78 (1975), 451-460. [9] . Da gadur, On Some subspaces of an FK space, Mathematical Communications, 7 (2002), 15-20.
  • R. Devos, Combinations of distinguished subsets and conullity, Math. Zeitschr., 192 (1986), 447-451. [11] D. J. H. Garling, The β- and γ-duality of sequence spaces, Proc. Camb. Phil. Soc., 63 (Jan. 1967), 963-981.
  • D. J. H. Garling, On topological sequence spaces, Proc. Camb. Phil. Soc., 63 (1967), 997-1019. [13] G. Goes and S. Goes, Sequences of bounded variation and sequences of fourier coe cients. I, Math. Zeitschr.,118(1970), 93-102.
  • G. Goes, Summan von FK-räumen funktionale abschnittskonvergenz und umkehrsatz, Tohoku. Math. J., 26(1974), 487-504.
  • E. Malkowsky, Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik 49(1997), 187 196.
  • A. Wilansky, Functional Analysis, Blaisdell Press, 1964.
  • A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw Hill, New York, 1978.
  • A. Wilansky, Summability Through Functional Analysis, North-Holland, Amsterdam, 1984.
  • K. Zeller, Allgemeine eigenschaften von limitierungsverfahren, Math. Zeitschr., 53 (1951), 463-487. Current address: *Yüzüncüy l Üniversitesi, E gitim Fakültesi, Matematik Bölümü, 65080/Van
There are 16 citations in total.

Details

Primary Language English
Journal Section Some Notes on the Extendibility of an Especial Family of Diophantine 𝑷𝟐 Pairs
Authors

Mahmut Karakuş This is me

Publication Date January 1, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Karakuş, M. (2018). ON SOME DISTINGUISHED SUBSPACES AND RELATIONSHIP BETWEEN DUALS. Journal of Advanced Mathematics and Mathematics Education, 1(1), 1-10.