Research Article
BibTex RIS Cite

Akciğer Kanserli Hastalarda Pozitron Emisyon Tomografisi Görüntülerinden Elde Edilen Semikantitatif Parametrelerin Tümör Histopatolojik Özellikleri ile İlişkisi

Year 2020, Volume: 5 Issue: 1, 1 - 6, 01.04.2020

Abstract

Amaç: Bu çalışmanın amacı; akciğer kanserli hastalarda pozitron emisyon tomografisi (18F-FDG PET/BT) görüntülerinden elde edilen, tümör metabolizmasını yansıtan semikantitatif parametrelerin tümörün klinik evresi ve histopatolojik özellikleri ile ilişkisinin araştırılmasıdır.
Gereç ve Yöntem: Çalışmaya 27’si adenokarsinom, 35’i epidermoid karsinom tanısı alan toplam 62 KHDAK’li hasta (E/K: 38/24; yaş ortalaması 61,29±9,5) dahil edildi. Hastaların tamamına kemo/radyoterapi öncesi F-18 FDG PET/ BT çekimi yapıldı ve SUVmax, SUVmean, metabolik tümör volümü (MTV) ve total lezyon glikolizis (TLG) değerlerinden oluşan metabolik semikantitatif parametreler hesaplandı. F-18 FDG PET/ BT metabolik parametreleri ile tümörün klinik evresi ve histopatolojik özellikleri (tümör alttipi, ki-67 indeksi) arasında bir ilişki olup olmadığı istatistiksel olarak değerlendirildi.
Bulgular: Tümör evrelerine göre tüm gruplar arası SUVmax, SUVmean, MTV ve TLG değerlerinde anlamlı farklılık gözlenmedi. Tümör alt tiplerine göre yapılan analizde adenokarsinomlu hastaların SUVmax, , SUVmean, MTV ve TLG değerlerinin epidermoid karsinomlu hastalara göre istatistiksel olarak anlamlı oranda daha düşük olduğu gözlendi (p=0,003, p=0,002, p=0,002, p=0,002). Ayrıca 40 hastadan oluşan subgrupta yaptığımız histopatolojik incelemede ki-67 proliferasyon indeksi ile TLG arasında orta derecede korelasyon gözlendi (p=0.4, p=0.03).
Sonuç: Küçük hücreli dışı akciğer kanserli hastalarda, F-18 FDG PET/BT metabolik parametreleri ile tümörün histopatolojik özellikleri korelasyon göstermekte olup hastalığın klinik sonuçlarını noninvaziv olarak öngörmede bu parametreler yardımcı rol oynayabilir.

Supporting Institution

TÜBİTAK

Project Number

113E188

Thanks

Bu proje TÜBİTAK (Proje No:113E188) tarafından desteklenmektedir.

References

  • KAYNAKLAR 1. Vach W, Høilund-Carlsen PF, Gerke O, Weber WA.Generating evidence for clinical benefit of PET/CT in diagnosing cancer patients. J Nucl Med. 2011;52(2):77-85.
  • 2. Chierichetti F, Pizzolato G. 18F-FDG-PET/CT. Q J Nucl Med Mol Imaging. 2012;56(2):138-50.
  • 3. Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005;62:545-53.
  • 4. Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response.J Nucl Med. 2009;50(1):88-99.
  • 5. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983-95.
  • 6. Weber WA, Schwaiger M, Avril N. Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol. 2000;27:683-87.
  • 7. van Baardwijk A, Bosmans G, van Suylen RJ, van Kroonenburgh M, Hochstenbag M, Geskes G, et al. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol. 2008;87(1):55-8.
  • 8. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al; European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 2008; 3(1):6-12. 9. Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS One. 2016;11:e0146195.
  • 10. Hatt M, Visvikis D, Pradier O, Cheze-le Rest C. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1595-606.
  • 11. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 2009;50(Suppl 1):122-50.
  • 12. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging. The Visual Response Score and the Change in Total Lesion Glycolysis. Clin Positron Imaging. 1999;2(3):159-71.
  • 13. Kaim AH, von Schulthess GK. Combined functional and morphological imaging with PET/CT systems. Praxis. 2003;92(6):225-7.
  • 14. Wahl RL, Jacene H, Kasamon Y, Lodge MA.From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 (1):122-50.
  • 15. Duhaylongsod FG, Lowe VJ, Patz EF Jr et al. Lung tumor growth correlates with glucose matabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann Thorac Surg. 1995;60(5):1348-52.
  • 16. Vesselle H, Schmidt RA, Pugsley JM et al. Lung cancer proliferation correlates with [F-18] fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6(10):3837-44.
  • 17. Sasaki R, Komaki R, Macapinlac H et al. 18Ffluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 2005;23(6):1136-43.
  • 18. Vansteenkiste JF, Stroobants SG, Dupont PJ et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol. 1999;17(10):3201-6.
  • 19. Dhital K, Saunders CA, Seed PT et al. [(18)F]Fluorodeoxyglucose positron emission tomography and its prognostic value in lung cancer. Eur J Cardiothorac Surg 2000;18(4):425-8.
  • 20. Ahuja V, Coleman RE, Herndon J, Patz EF Jr. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer. 1998; 83:918 –24.
  • 21. Sugawara Y, Quint LE, Iannettoni MD, Russo JE, Recker BE, Saran PA, Wahl RL. Does the FDG uptake of primary non-small cell lung cancer predict prognosis? A work in progress. Clin Positron Imaging. 1999; 2:111–8.
  • 22. Vesselle H, Freeman JD, Wiens L, Stern J, Nguyen HQ, Hawes SE, Bastian P, Vallie' res ASE, Wood DE. Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: New contrary data on prognostic role. Clin Cancer Res. 2007; 13(11):3255 - 63.
  • 23. Bing B, Bading J, Conti PS. Tumor quantification in clinical positron emission tomography. Theranostic. 2013; 3(10):787-801.
  • 24. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.
  • 25. Hatt M, Visvikis D, Pradier O, Cheze-le Rest C. Baseline ¹⁸F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38(9):1595-606.
  • 26. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311-22.
  • 27. Jakobsen JN, Sørensen JB. Clinical impact of ki-67 labeling index in non-small cell lung cancer. Lung Cancer. 2013;79(1):1-7.
  • 28. Pugsley JM1, Schmidt RA, Vesselle H. The Ki-67 index and survival in non-small cell lung cancer: a review and relevance to positron emission tomography. Cancer J. 2002;8(3):222-33.
  • 29. Nakamura H, Hirata T, Kitamura H, Nishikawa J. Correlation of the standardized uptake value in FDG-PET with the expression level of cell-cycle-related molecular biomarkers in resected non-small cell lung cancers. Ann Thorac Cardiovasc Surg. 2009;15(5):304-10.
Year 2020, Volume: 5 Issue: 1, 1 - 6, 01.04.2020

Abstract

Project Number

113E188

References

  • KAYNAKLAR 1. Vach W, Høilund-Carlsen PF, Gerke O, Weber WA.Generating evidence for clinical benefit of PET/CT in diagnosing cancer patients. J Nucl Med. 2011;52(2):77-85.
  • 2. Chierichetti F, Pizzolato G. 18F-FDG-PET/CT. Q J Nucl Med Mol Imaging. 2012;56(2):138-50.
  • 3. Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005;62:545-53.
  • 4. Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response.J Nucl Med. 2009;50(1):88-99.
  • 5. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983-95.
  • 6. Weber WA, Schwaiger M, Avril N. Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol. 2000;27:683-87.
  • 7. van Baardwijk A, Bosmans G, van Suylen RJ, van Kroonenburgh M, Hochstenbag M, Geskes G, et al. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol. 2008;87(1):55-8.
  • 8. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al; European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 2008; 3(1):6-12. 9. Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic Value of 18F-FDG PET/CT in Surgical Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS One. 2016;11:e0146195.
  • 10. Hatt M, Visvikis D, Pradier O, Cheze-le Rest C. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1595-606.
  • 11. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 2009;50(Suppl 1):122-50.
  • 12. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging. The Visual Response Score and the Change in Total Lesion Glycolysis. Clin Positron Imaging. 1999;2(3):159-71.
  • 13. Kaim AH, von Schulthess GK. Combined functional and morphological imaging with PET/CT systems. Praxis. 2003;92(6):225-7.
  • 14. Wahl RL, Jacene H, Kasamon Y, Lodge MA.From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 (1):122-50.
  • 15. Duhaylongsod FG, Lowe VJ, Patz EF Jr et al. Lung tumor growth correlates with glucose matabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann Thorac Surg. 1995;60(5):1348-52.
  • 16. Vesselle H, Schmidt RA, Pugsley JM et al. Lung cancer proliferation correlates with [F-18] fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6(10):3837-44.
  • 17. Sasaki R, Komaki R, Macapinlac H et al. 18Ffluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 2005;23(6):1136-43.
  • 18. Vansteenkiste JF, Stroobants SG, Dupont PJ et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol. 1999;17(10):3201-6.
  • 19. Dhital K, Saunders CA, Seed PT et al. [(18)F]Fluorodeoxyglucose positron emission tomography and its prognostic value in lung cancer. Eur J Cardiothorac Surg 2000;18(4):425-8.
  • 20. Ahuja V, Coleman RE, Herndon J, Patz EF Jr. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer. 1998; 83:918 –24.
  • 21. Sugawara Y, Quint LE, Iannettoni MD, Russo JE, Recker BE, Saran PA, Wahl RL. Does the FDG uptake of primary non-small cell lung cancer predict prognosis? A work in progress. Clin Positron Imaging. 1999; 2:111–8.
  • 22. Vesselle H, Freeman JD, Wiens L, Stern J, Nguyen HQ, Hawes SE, Bastian P, Vallie' res ASE, Wood DE. Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: New contrary data on prognostic role. Clin Cancer Res. 2007; 13(11):3255 - 63.
  • 23. Bing B, Bading J, Conti PS. Tumor quantification in clinical positron emission tomography. Theranostic. 2013; 3(10):787-801.
  • 24. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.
  • 25. Hatt M, Visvikis D, Pradier O, Cheze-le Rest C. Baseline ¹⁸F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38(9):1595-606.
  • 26. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311-22.
  • 27. Jakobsen JN, Sørensen JB. Clinical impact of ki-67 labeling index in non-small cell lung cancer. Lung Cancer. 2013;79(1):1-7.
  • 28. Pugsley JM1, Schmidt RA, Vesselle H. The Ki-67 index and survival in non-small cell lung cancer: a review and relevance to positron emission tomography. Cancer J. 2002;8(3):222-33.
  • 29. Nakamura H, Hirata T, Kitamura H, Nishikawa J. Correlation of the standardized uptake value in FDG-PET with the expression level of cell-cycle-related molecular biomarkers in resected non-small cell lung cancers. Ann Thorac Cardiovasc Surg. 2009;15(5):304-10.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Makale
Authors

Seyhan Karaçavuş 0000-0002-0651-6441

Arzu Tasdemir 0000-0002-5183-6663

Eser Kaya This is me 0000-0003-2931-9974

Project Number 113E188
Publication Date April 1, 2020
Acceptance Date March 27, 2020
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

Vancouver Karaçavuş S, Tasdemir A, Kaya E. Akciğer Kanserli Hastalarda Pozitron Emisyon Tomografisi Görüntülerinden Elde Edilen Semikantitatif Parametrelerin Tümör Histopatolojik Özellikleri ile İlişkisi. JAMER. 2020;5(1):1-6.