Research Article
BibTex RIS Cite

Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them

Year 2024, , 170 - 189, 29.12.2024
https://doi.org/10.35206/jan.1565205

Abstract

A plethora of studies provide evidence on honey biological properties such as antibacterial, antioxidant and anti-inflammatory activity. However, antifungal activity exerted by honey is rather under investigated. Due to widespread antimicrobial resistance, the emergence of novel antifungal agents, as well as the identification of alternative therapies, is crucial. This study aimed to investigate the antifungal activity exerted by heather and chestnut honeys, harvested across Greece, as well as the antifungal activity of bacteria isolated from them, against Penicillium commune, Penicillium expansum, Aspergillus niger, Candida albicans M10/20 and Candida albicans M 351/19. Fungistatic activity against all tested fungi and fungicidal activity against C. albicans strains was exerted by most Greek honeys. Exerted antifungal activity was comparable to Manuka honey. Furthermore, most of the identified bacterial isolates inhibited the growth of fungal strains, in antagonistic assays. This study for the first time demonstrated the significant antifungal activity exerted by heather and chestnut honeys produced in Greece, as well as the important role of their microbiome in observed antifungal activity. Nevertheless, our results warrant further research in order to develop novel antifungal agents and alternative therapies.

References

  • Adams, C. J., Manley-Harris, M., & Molan, P. C. (2009). The origin of methylglyoxal in New Zealand Manuka (Leptospermum scoparium) honey. Carbohydrate Research, 344(8), 1050–1053.
  • Ahmad, K., Khali, A. T., Somayya, R., Khan, F. N., Shah, A. R., Ovais, M., & Shinwari, Z. K. (2017). Potential antifungal activity of different honey brands from Pakistan: A quest for natural remedy. African Journal of Traditional, Complementary and Alternative Medicines, 14(5), 18-23
  • Almasaudi, S. (2021). The antibacterial activities of honey. Saudi Journal of Biological Sciences, 28(4), 2188–2196.
  • Anthimidou, E., & Mossialos, D. (2013). Antibacterial Activity of Greek and Cypriot Honeys Against Staphylococcus aureus and Pseudomonas aeruginosa in Comparison to Manuka Honey. Journal of Medicinal Food, 16(1), 42–47.
  • Kolayli, S., Palabiyik, I., Atik, D., Keskin, M., Bozdeveci, A., & Karaoglu, S. (2020). Comparison of Antibacterial and Antifungal Effects of Different Varieties of Honey and Propolis Samples. Acta Alimentaria, 49(4), 515–523.
  • Brudzynski, K. (2021). Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics, 10(5), 551.
  • Dadar, M., Tiwari, R., Karthik, K., Chakraborty, S., Shahali, Y., & Dhama, K. (2018). Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microbial Pathogenesis, 117, 128–138.
  • Feás, X., & Estevinho, M. L. (2011). A Survey of the In Vitro Antifungal Activity of Heather ( Erica Sp.) Organic Honey. Journal of Medicinal Food, 14(10), 1284–1288.
  • Fernandes, L., Ribeiro, H., Oliveira, A., Sanches Silva, A., Freitas, A., Henriques, M., & Rodrigues, M. E. (2021). Portuguese honeys as antimicrobial agents against Candida species. Journal of Traditional and Complementary Medicine, 11(2), 130–136.
  • Harwood, C. R., Mouillon, J.-M., Pohl, S., & Arnau, J. (2018). Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42(6), 721–738.
  • Jurado, M., & Vicente, C. J. (2020). Penicillium commune affects textural properties and water distribution of hard and extra-hard cheeses. Journal of Dairy Research, 87(1), 117–122.
  • Kačániová, M., Borotová, P., Galovičová, L., Kunová, S., Štefániková, J., Kowalczewski, P. Ł., & Šedík, P. (2022). Antimicrobial and Antioxidant Activity of Different Honey Samples from Beekeepers and Commercial Producers. Antibiotics, 11(9), 1163.
  • Kacániová, M., Fatrcová-Sramková, K., Nozková, J., Melich, M., Kadasi-Horáková, M., Knazovická, V., Felsöciová, S., Kunová, S., & Máriássyová, M. (2011). Antiradical activity of natural honeys and antifungal effect against Penicillium genera. Journal of Environmental Science and Health, Part B, Pesticides, food contaminants, and agricultural wastes, 46(1), 92–96.
  • Kunat-Budzyńska, M., Rysiak, A., Wiater, A., Grąz, M., Andrejko, M., Budzyński, M., Bryś, M. S., Sudziński, M., Tomczyk, M., Gancarz, M., Rusinek, R., & Ptaszyńska, A. A. (2023). Chemical Composition and Antimicrobial Activity of New Honey Varietals. International Journal of Environmental Research and Public Health, 20(3), 2458.
  • Kunčič, M. K., Jaklič, D., Lapanje, A., & Gunde-Cimerman, N. (2012). Antibacterial and antimycotic activities of Slovenian honeys. British Journal of Biomedical Science, 69(4), 154–158.
  • Lee, Y., Robbins, N., & Cowen, L. E. (2023). Molecular mechanisms governing antifungal drug resistance. Npj Antimicrobials and Resistance, 1(1), 5.
  • Li, B., Chen, Y., Zhang, Z., Qin, G., Chen, T., & Tian, S. (2020). Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3416–3438.
  • Mandal, M. D., & Mandal, S. (2011). Honey: Its medicinal property and antibacterial activity. Asian Pacific Journal of Tropical Biomedicine, 1(2), 154–160.
  • Manns, D. C., Churey, J. J., & Worobo, R. W. (2012). Functional Assignment of YvgO, a Novel Set of Purified and Chemically Characterized Proteinaceous Antifungal Variants Produced by Bacillus thuringiensis SF361. Applied and Environmental Microbiology, 78(8), 2543–2552.
  • Molina-Romero, D., Baez, A., Castañeda-Lucio, M., & Ernesto, L. (2017). Antagonism assays to identify bacterial strains producing antimicrobial compounds.PLoS One, 12 (11), 1-2 Olaitan, P. B., Adeleke, O. E., & Ola, I. O. (2007). Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7(3), 159–165.
  • Patton, T., Barrett, J., Brennan, J., & Moran, N. (2006). Use of a spectrophotometric bioassay for determination of microbial sensitivity to Manuka honey. Journal of Microbiological Methods, 64(1), 84–95.
  • Person, A. K., Chudgar, S. M., Norton, B. L., Tong, B. C., & Stout, J. E. (2010). Aspergillus niger: An unusual cause of invasive pulmonary aspergillosis. Journal of Medical Microbiology, 59(Pt 7), 834–838.
  • Pitt, J. I., & Hocking, A. D. (2009a). Aspergillus and Related Teleomorphs. In J. I. Pitt & A. D. Hocking (Eds.), Fungi and Food Spoilage (pp. 275–337). Springer US.
  • Pitt, J. I., & Hocking, A. D. (2009b). Penicillium and Related Genera. In J. I. Pitt & A. D. Hocking (Eds.), Fungi and Food Spoilage (pp. 169–273). Springer US.
  • Pomastowski, P., Złoch, M., Rodzik, A., Ligor, M., Kostrzewa, M., & Buszewski, B. (2019). Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique. PLoS ONE, 14(5), e0217078.
  • Rabie, E., Serem, J. C., Oberholzer, H. M., Gaspar, A. R. M., & Bester, M. J. (2016). How methylglyoxal kills bacteria: An ultrastructural study. Ultrastructural Pathology, 40(2), 107–111.
  • Ramos, O. Y., Salomón, V., Libonatti, C., Cepeda, R., Maldonado, L., & Basualdo, M. (2018). Effect of botanical and physicochemical composition of Argentinean honeys on the inhibitory action against food pathogens. LWT, 87, 457–463.
  • Ranneh, Y., Akim, A. M., Hamid, H. Ab., Khazaai, H., Fadel, A., Zakaria, Z. A., Albujja, M., & Bakar, M. F. A. (2021). Honey and its nutritional and anti-inflammatory value. BMC Complementary Medicine and Therapies, 21, 30.
  • Romsdahl, J., Blachowicz, A., Chiang, A. J., Singh, N., Stajich, J. E., Kalkum, M., Venkateswaran, K., & Wang, C. C. C. (2018). Characterization of Aspergillus niger Isolated from the International Space Station. mSystems, 3(5), e00112-18.
  • Schiassi, M. C. E. V., Souza, V. R. de, Lago, A. M. T., Carvalho, G. R., Curi, P. N., Guimarães, A. S., & Queiroz, F. (2021). Quality of honeys from different botanical origins. Journal of Food Science and Technology, 58(11), 4167.
  • Snyder, A. B., & Worobo, R. W. (2018). Fungal Spoilage in Food Processing. Journal of Food Protection, 81(6), 1035–1040.
  • Stagos, D., Soulitsiotis, N., Tsadila, C., Papaeconomou, S., Arvanitis, C., Ntontos, A., Karkanta, F., Adamou-Androulaki, S., Petrotos, K., Spandidos, D. A., Kouretas, D., & Mossialos, D. (2018). Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. International Journal of Molecular Medicine, 42(2), 726–734.
  • Suhana, S., Sayadi, S., & Mohd Zohdi, R. (2015). Antifungal activity of selected Malaysian honeys: A comparison with Manuka honey. Journal of Coastal Life Medicine, 3, 539–542.
  • Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. Journal of Fungi, 7(2), 79.
  • Tannous, J., Barda, O., Luciano-Rosario, D., Prusky, D. B., Sionov, E., & Keller, N. P. (2020). New Insight Into Pathogenicity and Secondary Metabolism of the Plant Pathogen Penicillium expansum Through Deletion of the Epigenetic Reader SntB. Frontiers in Microbiology, 11.
  • Tsadila, C., Nikolaidis, M., Dimitriou, T. G., Kafantaris, I., Amoutzias, G. D., Pournaras, S., & Mossialos, D. (2021). Antibacterial Activity and Characterization of Bacteria Isolated from Diverse Types of Greek Honey against Nosocomial and Foodborne Pathogens. Applied Sciences, 11(13), 5801.
  • Tsavea, E., & Mossialos, D. (2019). Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds. Journal of Apicultural Research, 58(5), 756–763.
  • Tsavea, E., Vardaka, F.-P., Savvidaki, E., Kellil, A., Kanelis, D., Bucekova, M., Grigorakis, S., Godocikova, J., Gotsiou, P., Dimou, M., Loupassaki, S., Remoundou, I., Tsadila, C., Dimitriou, T. G., Majtan, J., Tananaki, C., Alissandrakis, E., & Mossialos, D. (2022). Physicochemical Characterization and Biological Properties of Pine Honey Produced across Greece. Foods, 11(7), 943.
  • Vică, M. L., Glevitzky, M., Dumitrel, G.-A., Bostan, R., Matei, H. V., Kartalska, Y., & Popa, M. (2022). Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics, 11(11), 1552.
  • Vidal, A., Ouhibi, S., Ghali, R., Hedhili, A., De Saeger, S., & De Boevre, M. (2019). The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology, 129, 249–256.
  • Vitiello, A., Ferrara, F., Boccellino, M., Ponzo, A., Cimmino, C., Comberiati, E., Zovi, A., Clemente, S., & Sabbatucci, M. (2023). Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines, 11(4), 1063.
  • Xiong, Z. R., Cobo, M., Whittal, R. M., Snyder, A. B., & Worobo, R. W. (2022). Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PloS One, 17(4), e0266470.
  • Xiong, Z. R., Sogin, J. H., & Worobo, R. W. (2023). Microbiome analysis of raw honey reveals important factors influencing the bacterial and fungal communities. Frontiers in Microbiology, 13, 1099522.
Year 2024, , 170 - 189, 29.12.2024
https://doi.org/10.35206/jan.1565205

Abstract

References

  • Adams, C. J., Manley-Harris, M., & Molan, P. C. (2009). The origin of methylglyoxal in New Zealand Manuka (Leptospermum scoparium) honey. Carbohydrate Research, 344(8), 1050–1053.
  • Ahmad, K., Khali, A. T., Somayya, R., Khan, F. N., Shah, A. R., Ovais, M., & Shinwari, Z. K. (2017). Potential antifungal activity of different honey brands from Pakistan: A quest for natural remedy. African Journal of Traditional, Complementary and Alternative Medicines, 14(5), 18-23
  • Almasaudi, S. (2021). The antibacterial activities of honey. Saudi Journal of Biological Sciences, 28(4), 2188–2196.
  • Anthimidou, E., & Mossialos, D. (2013). Antibacterial Activity of Greek and Cypriot Honeys Against Staphylococcus aureus and Pseudomonas aeruginosa in Comparison to Manuka Honey. Journal of Medicinal Food, 16(1), 42–47.
  • Kolayli, S., Palabiyik, I., Atik, D., Keskin, M., Bozdeveci, A., & Karaoglu, S. (2020). Comparison of Antibacterial and Antifungal Effects of Different Varieties of Honey and Propolis Samples. Acta Alimentaria, 49(4), 515–523.
  • Brudzynski, K. (2021). Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics, 10(5), 551.
  • Dadar, M., Tiwari, R., Karthik, K., Chakraborty, S., Shahali, Y., & Dhama, K. (2018). Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microbial Pathogenesis, 117, 128–138.
  • Feás, X., & Estevinho, M. L. (2011). A Survey of the In Vitro Antifungal Activity of Heather ( Erica Sp.) Organic Honey. Journal of Medicinal Food, 14(10), 1284–1288.
  • Fernandes, L., Ribeiro, H., Oliveira, A., Sanches Silva, A., Freitas, A., Henriques, M., & Rodrigues, M. E. (2021). Portuguese honeys as antimicrobial agents against Candida species. Journal of Traditional and Complementary Medicine, 11(2), 130–136.
  • Harwood, C. R., Mouillon, J.-M., Pohl, S., & Arnau, J. (2018). Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42(6), 721–738.
  • Jurado, M., & Vicente, C. J. (2020). Penicillium commune affects textural properties and water distribution of hard and extra-hard cheeses. Journal of Dairy Research, 87(1), 117–122.
  • Kačániová, M., Borotová, P., Galovičová, L., Kunová, S., Štefániková, J., Kowalczewski, P. Ł., & Šedík, P. (2022). Antimicrobial and Antioxidant Activity of Different Honey Samples from Beekeepers and Commercial Producers. Antibiotics, 11(9), 1163.
  • Kacániová, M., Fatrcová-Sramková, K., Nozková, J., Melich, M., Kadasi-Horáková, M., Knazovická, V., Felsöciová, S., Kunová, S., & Máriássyová, M. (2011). Antiradical activity of natural honeys and antifungal effect against Penicillium genera. Journal of Environmental Science and Health, Part B, Pesticides, food contaminants, and agricultural wastes, 46(1), 92–96.
  • Kunat-Budzyńska, M., Rysiak, A., Wiater, A., Grąz, M., Andrejko, M., Budzyński, M., Bryś, M. S., Sudziński, M., Tomczyk, M., Gancarz, M., Rusinek, R., & Ptaszyńska, A. A. (2023). Chemical Composition and Antimicrobial Activity of New Honey Varietals. International Journal of Environmental Research and Public Health, 20(3), 2458.
  • Kunčič, M. K., Jaklič, D., Lapanje, A., & Gunde-Cimerman, N. (2012). Antibacterial and antimycotic activities of Slovenian honeys. British Journal of Biomedical Science, 69(4), 154–158.
  • Lee, Y., Robbins, N., & Cowen, L. E. (2023). Molecular mechanisms governing antifungal drug resistance. Npj Antimicrobials and Resistance, 1(1), 5.
  • Li, B., Chen, Y., Zhang, Z., Qin, G., Chen, T., & Tian, S. (2020). Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3416–3438.
  • Mandal, M. D., & Mandal, S. (2011). Honey: Its medicinal property and antibacterial activity. Asian Pacific Journal of Tropical Biomedicine, 1(2), 154–160.
  • Manns, D. C., Churey, J. J., & Worobo, R. W. (2012). Functional Assignment of YvgO, a Novel Set of Purified and Chemically Characterized Proteinaceous Antifungal Variants Produced by Bacillus thuringiensis SF361. Applied and Environmental Microbiology, 78(8), 2543–2552.
  • Molina-Romero, D., Baez, A., Castañeda-Lucio, M., & Ernesto, L. (2017). Antagonism assays to identify bacterial strains producing antimicrobial compounds.PLoS One, 12 (11), 1-2 Olaitan, P. B., Adeleke, O. E., & Ola, I. O. (2007). Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7(3), 159–165.
  • Patton, T., Barrett, J., Brennan, J., & Moran, N. (2006). Use of a spectrophotometric bioassay for determination of microbial sensitivity to Manuka honey. Journal of Microbiological Methods, 64(1), 84–95.
  • Person, A. K., Chudgar, S. M., Norton, B. L., Tong, B. C., & Stout, J. E. (2010). Aspergillus niger: An unusual cause of invasive pulmonary aspergillosis. Journal of Medical Microbiology, 59(Pt 7), 834–838.
  • Pitt, J. I., & Hocking, A. D. (2009a). Aspergillus and Related Teleomorphs. In J. I. Pitt & A. D. Hocking (Eds.), Fungi and Food Spoilage (pp. 275–337). Springer US.
  • Pitt, J. I., & Hocking, A. D. (2009b). Penicillium and Related Genera. In J. I. Pitt & A. D. Hocking (Eds.), Fungi and Food Spoilage (pp. 169–273). Springer US.
  • Pomastowski, P., Złoch, M., Rodzik, A., Ligor, M., Kostrzewa, M., & Buszewski, B. (2019). Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique. PLoS ONE, 14(5), e0217078.
  • Rabie, E., Serem, J. C., Oberholzer, H. M., Gaspar, A. R. M., & Bester, M. J. (2016). How methylglyoxal kills bacteria: An ultrastructural study. Ultrastructural Pathology, 40(2), 107–111.
  • Ramos, O. Y., Salomón, V., Libonatti, C., Cepeda, R., Maldonado, L., & Basualdo, M. (2018). Effect of botanical and physicochemical composition of Argentinean honeys on the inhibitory action against food pathogens. LWT, 87, 457–463.
  • Ranneh, Y., Akim, A. M., Hamid, H. Ab., Khazaai, H., Fadel, A., Zakaria, Z. A., Albujja, M., & Bakar, M. F. A. (2021). Honey and its nutritional and anti-inflammatory value. BMC Complementary Medicine and Therapies, 21, 30.
  • Romsdahl, J., Blachowicz, A., Chiang, A. J., Singh, N., Stajich, J. E., Kalkum, M., Venkateswaran, K., & Wang, C. C. C. (2018). Characterization of Aspergillus niger Isolated from the International Space Station. mSystems, 3(5), e00112-18.
  • Schiassi, M. C. E. V., Souza, V. R. de, Lago, A. M. T., Carvalho, G. R., Curi, P. N., Guimarães, A. S., & Queiroz, F. (2021). Quality of honeys from different botanical origins. Journal of Food Science and Technology, 58(11), 4167.
  • Snyder, A. B., & Worobo, R. W. (2018). Fungal Spoilage in Food Processing. Journal of Food Protection, 81(6), 1035–1040.
  • Stagos, D., Soulitsiotis, N., Tsadila, C., Papaeconomou, S., Arvanitis, C., Ntontos, A., Karkanta, F., Adamou-Androulaki, S., Petrotos, K., Spandidos, D. A., Kouretas, D., & Mossialos, D. (2018). Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. International Journal of Molecular Medicine, 42(2), 726–734.
  • Suhana, S., Sayadi, S., & Mohd Zohdi, R. (2015). Antifungal activity of selected Malaysian honeys: A comparison with Manuka honey. Journal of Coastal Life Medicine, 3, 539–542.
  • Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. Journal of Fungi, 7(2), 79.
  • Tannous, J., Barda, O., Luciano-Rosario, D., Prusky, D. B., Sionov, E., & Keller, N. P. (2020). New Insight Into Pathogenicity and Secondary Metabolism of the Plant Pathogen Penicillium expansum Through Deletion of the Epigenetic Reader SntB. Frontiers in Microbiology, 11.
  • Tsadila, C., Nikolaidis, M., Dimitriou, T. G., Kafantaris, I., Amoutzias, G. D., Pournaras, S., & Mossialos, D. (2021). Antibacterial Activity and Characterization of Bacteria Isolated from Diverse Types of Greek Honey against Nosocomial and Foodborne Pathogens. Applied Sciences, 11(13), 5801.
  • Tsavea, E., & Mossialos, D. (2019). Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds. Journal of Apicultural Research, 58(5), 756–763.
  • Tsavea, E., Vardaka, F.-P., Savvidaki, E., Kellil, A., Kanelis, D., Bucekova, M., Grigorakis, S., Godocikova, J., Gotsiou, P., Dimou, M., Loupassaki, S., Remoundou, I., Tsadila, C., Dimitriou, T. G., Majtan, J., Tananaki, C., Alissandrakis, E., & Mossialos, D. (2022). Physicochemical Characterization and Biological Properties of Pine Honey Produced across Greece. Foods, 11(7), 943.
  • Vică, M. L., Glevitzky, M., Dumitrel, G.-A., Bostan, R., Matei, H. V., Kartalska, Y., & Popa, M. (2022). Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics, 11(11), 1552.
  • Vidal, A., Ouhibi, S., Ghali, R., Hedhili, A., De Saeger, S., & De Boevre, M. (2019). The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology, 129, 249–256.
  • Vitiello, A., Ferrara, F., Boccellino, M., Ponzo, A., Cimmino, C., Comberiati, E., Zovi, A., Clemente, S., & Sabbatucci, M. (2023). Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines, 11(4), 1063.
  • Xiong, Z. R., Cobo, M., Whittal, R. M., Snyder, A. B., & Worobo, R. W. (2022). Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey. PloS One, 17(4), e0266470.
  • Xiong, Z. R., Sogin, J. H., & Worobo, R. W. (2023). Microbiome analysis of raw honey reveals important factors influencing the bacterial and fungal communities. Frontiers in Microbiology, 13, 1099522.
There are 43 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Ioanna Boutrou 0009-0007-7278-7067

Christina Tsadila 0000-0001-9136-7948

Chiara Amoroso 0009-0004-6553-4190

Dimitrios Mosialos 0000-0003-3753-4287

Publication Date December 29, 2024
Submission Date October 11, 2024
Acceptance Date November 29, 2024
Published in Issue Year 2024

Cite

APA Boutrou, I., Tsadila, C., Amoroso, C., Mosialos, D. (2024). Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them. Journal of Apitherapy and Nature, 7(2), 170-189. https://doi.org/10.35206/jan.1565205
AMA Boutrou I, Tsadila C, Amoroso C, Mosialos D. Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them. J.Apit.Nat. December 2024;7(2):170-189. doi:10.35206/jan.1565205
Chicago Boutrou, Ioanna, Christina Tsadila, Chiara Amoroso, and Dimitrios Mosialos. “Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them”. Journal of Apitherapy and Nature 7, no. 2 (December 2024): 170-89. https://doi.org/10.35206/jan.1565205.
EndNote Boutrou I, Tsadila C, Amoroso C, Mosialos D (December 1, 2024) Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them. Journal of Apitherapy and Nature 7 2 170–189.
IEEE I. Boutrou, C. Tsadila, C. Amoroso, and D. Mosialos, “Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them”, J.Apit.Nat., vol. 7, no. 2, pp. 170–189, 2024, doi: 10.35206/jan.1565205.
ISNAD Boutrou, Ioanna et al. “Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them”. Journal of Apitherapy and Nature 7/2 (December 2024), 170-189. https://doi.org/10.35206/jan.1565205.
JAMA Boutrou I, Tsadila C, Amoroso C, Mosialos D. Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them. J.Apit.Nat. 2024;7:170–189.
MLA Boutrou, Ioanna et al. “Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them”. Journal of Apitherapy and Nature, vol. 7, no. 2, 2024, pp. 170-89, doi:10.35206/jan.1565205.
Vancouver Boutrou I, Tsadila C, Amoroso C, Mosialos D. Antifungal Activity Exerted by Greek Honeys and Bacteria Isolated from Them. J.Apit.Nat. 2024;7(2):170-89.
  • 23484   ASOS Index