Review
BibTex RIS Cite

Bee Venom and Its Therapeutic Uses

Year 2024, Volume: 7 Issue: 2, 65 - 84, 29.12.2024
https://doi.org/10.35206/jan.1378226

Abstract

The use of honey and other bee products goes back thousands of years. So that even its therapeutic benefits are mentioned in sacred books such as (Veda, the holy book of India), (Bible, the holy book of Christians) and the Quran. Apiterapy is the use of bee products for medical purposes, which includes honey, royal jelly, propolis, flower pollen, and mainly bee venom, which is known as apitoxin
Bee venom consists of at least 18 pharmacologically active compounds including enzymes such as phospholipases, peptide and amino acid compounds such as melittin, which has anti-inflammatory properties. Other properties such as anti-apoptotic and anti-cancer properties have also been mentioned for bee venom.
Since, the lethal dose (LD50) of the poison for humans is 2.8 mg/kg per kilogram of body weight, so it is a safe combination for therapeutic purposes. Bee venom has a high potential in the treatment of inflammatory diseases and the central nervous system such as Parkinson's, Alzheimer's, myotrophic sclerosis and various types of cancer. Also, due to its antiviral activity, it has been effective even against the human immunodeficiency virus (HIV).
Due to the prevalence of diseases in today's societies, it is inevitable to find new treatment solutions. On the other hand, the drugs used in traditional medicine play an important role in the treatment of diseases. Among these natural substances is bee venom. which should be taken into consideration due to its many therapeutic properties in the treatment of diseases.

References

  • Aarsland, D., Creese, B., Politis, M., Chaudhuri, K. R., Ffytche, D. H., Weintraub, D., & Ballard, C. (2017). Cognitive decline in Parkinson disease. Nature Reviews Neurology, 13(4), 217-231.
  • Ali, M. A. A. S. M. (2012). Studies on bee venom and its medical uses. Int J Adv Res Technol, 1(2), 69-83.
  • Aksoz, E., Gocmez, S. S., Sahin, T. D., Aksit, D., Aksit, H., & Utkan, T. (2019). The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacological Reports, 71(5), 818-825.
  • Bachis, A., Cruz, M. I., & Mocchetti, I. (2010). M‐tropic HIV envelope protein gp120 exhibits a different neuropathological profile than T‐tropic gp120 in rat striatum. European Journal of Neuroscience, 32(4), 570-578.
  • Bond, C. T., Herson, P. S., Strassmaier, T., Hammond, R., Stackman, R., Maylie, J., & Adelman, J. P. (2004). Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. Journal of Neuroscience, 24(23), 5301-5306.
  • Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A., & Simal-Gandara, J. (2020). Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients, 12(11), 3360.
  • Cherniack, E. P., & Govorushko, S. (2018). To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon, 154, 74-78.
  • de Matos Silva, L. F. C., de Paula Ramos, E. R., Ambiel, C. R., Correia-de-Sá, P., & Alves-Do-Prado, W. (2010). Apamin reduces neuromuscular transmission by activating inhibitory muscarinic M2 receptors on motor nerve terminals. European journal of pharmacology, 626(2-3), 239-243.
  • Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V., & Kokotos, G. (2011). Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chemical reviews, 111(10), 6130-6185.
  • Eiseman, J. L., Von Bredow, J., & Alvares, A. P. (1982). Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochemical pharmacology, 31(6), 1139-1146.
  • Fenard, D., Lambeau, G., Maurin, T., Lefebvre, J. C., & Doglio, A. (2001). A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Molecular pharmacology, 60(2), 341-347.
  • Garcia-Pastor, P., Randazzo, A., Gomez-Paloma, L., Alcaraz, M. J., & Paya, M. (1999). Effects of petrosaspongiolide M, a novel phospholipase A2 inhibitor, on acute and chronic inflammation. Journal of Pharmacology and experimental Therapeutics, 289(1), 166-172.
  • Goldman, J. G., Williams‐Gray, C., Barker, R. A., Duda, J. E., & Galvin, J. E. (2014). The spectrum of cognitive impairment in Lewy body diseases. Movement Disorders, 29(5), 608-621.
  • Hadjipetrou-Kourounakis, L., & Yiangou, M. (1984). Bee venom and adjuvant induced disease. The Journal of Rheumatology, 11(5), 720-720.
  • Hanson, J. M., Morley, J., & Soria-Herrera, C. (1974). Anti-inflammatory property of 401 (MCD-peptide), a peptide from the venom of the bee Apis mellifera (L.). British journal of pharmacology, 50(3), 383.
  • Hong, J., Lu, X., Deng, Z., Xiao, S., Yuan, B., & Yang, K. (2019). How melittin inserts into cell membrane: conformational changes, inter-peptide cooperation, and disturbance on the membrane. Molecules, 24(9), 1775.
  • Hood, J. L., Jallouk, A. P., Campbell, N., Ratner, L., & Wickline, S. A. (2013). Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral therapy, 18(1), 95-103.
  • Huang, S., Jianhua, W. A. N. G., Xiaozhong, W. A. N. G., & Chenghong, L. I. (2016, December). Melittin: A key composition of honey bee venom with diverse pharmaceutical function. In International Conference on Biological Engineering and Pharmacy 2016 (BEP 2016) (pp. 193-197). Atlantis Press.
  • Iakovakis, D., Hadjidimitriou, S., Charisis, V., Bostantzopoulou, S., Katsarou, Z., & Hadjileontiadis, L. J. (2018). Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease. Scientific reports, 8(1), 1-13.
  • Jaarsma, D., Haasdijk, E. D., Grashorn, J. A. C., Hawkins, R., van Duijn, W., Verspaget, H. W., ... & Holstege, J. C. (2000). Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiology of disease, 7(6), 623-643.
  • Jo, M., Park, M. H., Kollipara, P. S., An, B. J., Song, H. S., Han, S. B., ... & Hong, J. T. (2012). Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicology and applied pharmacology, 258(1), 72-81.
  • Jung, G. B., Huh, J. E., Lee, H. J., Kim, D., Lee, G. J., Park, H. K., & Lee, J. D. (2018). Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomedical optics express, 9(11), 5703-5718.
  • Kang, S. S., Pak, S. C., & Choi, S. H. (2002). The effect of whole bee venom on arthritis. The American journal of Chinese medicine, 30(01), 73-80.
  • Khalil, W. K., Assaf, N., ElShebiney, S. A., & Salem, N. A. (2015). Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochemistry international, 80, 79-86.
  • Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 4, 575-590.
  • Klocek, G., Schulthess, T., Shai, Y., & Seelig, J. (2009). Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation. Biochemistry, 48(12), 2586-2596.
  • Krell, R. (1996). Value-added products from beekeeping (No. 124). Food & Agriculture Org.. Lambeau, G., Barhanin, J., Schweitz, H., Qar, J. A. N. T. I., & Lazdunski, M. (1989). Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. Journal of Biological Chemistry, 264(19), 11503-11510.
  • Lambeau, G. A., Schmid-Alliana, A., Lazdunski, M., & Barhanin, J. (1990). Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. Journal of Biological Chemistry, 265(16), 9526-9532.
  • Lamy, C., Goodchild, S. J., Weatherall, K. L., Jane, D. E., Liégeois, J. F., Seutin, V., & Marrion, N. V. (2010). Allosteric block of KCa2 channels by apamin. Journal of Biological Chemistry, 285(35), 27067-27077.
  • Lee, J. Y., Kang, S. S., Kim, J. H., Bae, C. S., & Choi, S. H. (2005). Inhibitory effect of whole bee venom in adjuvant-induced arthritis. in vivo, 19(4), 801-805.
  • Lee, G., & Bae, H. (2016). Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules, 21(5), 616.
  • Lee, W. R., Pak, S. C., & Park, K. K. (2015). The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins, 7(11), 4758-4772.
  • Lee, Y. M., Cho, S. N., Son, E., Song, C. H., & Kim, D. S. (2020). Apamin from bee venom suppresses inflammation in a murine model of gouty arthritis. Journal of ethnopharmacology, 257, 112860.
  • Lim, H. N., Baek, S. B., & Jung, H. J. (2019). Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules, 24(5), 929.
  • Liu, X., Chen, D., Xie, L., & Zhang, R. (2002). Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in‐vitro and growth of murine B16 melanomas in‐vivo. Journal of pharmacy and pharmacology, 54(8), 1083-1089.
  • Memariani, H., Memariani, M., Moravvej, H., & Shahidi-Dadras, M. (2020). Melittin: a venom-derived peptide with promising anti-viral properties. European Journal of Clinical Microbiology & Infectious Diseases, 39(1), 5-17.
  • Palma, M. S. (2013). Hymenoptera insect peptides. Handbook of biologically active peptides, 416-422. Park, H. J., Lee, S. H., Son, D. J., Oh, K. W., Kim, K. H., Song, H. S., ... & Hong, J. T. (2004). Antiarthritic effect of bee venom: Inhibition of inflammation mediator generation by suppression of NF‐κB through interaction with the p50 subunit. Arthritis & rheumatism, 50(11), 3504-3515.
  • Park, M. H., Choi, M. S., Kwak, D. H., Oh, K. W., Yoon, D. Y., Han, S. B., ... & Hong, J. T. (2011). Anti‐cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF‐κB. The Prostate, 71(8), 801-812.
  • Rached, I. C. F. S., Castro, F. M., Guzzo, M. L., & de Mello, S. B. V. (2010). Anti-inflammatory effect of bee venom on antigen-induced arthritis in rabbits: influence of endogenous glucocorticoids. Journal of ethnopharmacology, 130(1), 175-178.
  • Rajabi, M., & Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2), 34. Rajagopalan, V., & Pioro, E. P. (2019). Unbiased MRI analyses identify micropathologic differences between upper motor neuron-predominant ALS phenotypes. Frontiers in Neuroscience, 13, 704.
  • Rose, A. (1994). Bees in balance. Starboint Enterprises, Ltd, Bethesda, Maryland.
  • Samel, M., Vija, H., Kurvet, I., Künnis-Beres, K., Trummal, K., Subbi, J., ... & Siigur, J. (2013). Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins, 5(2), 203-223.
  • Sharma, H. C., & Singh, O. P. (1983). Medicinal properties of some lesser known but important bee products. Shin, S. H., Ye, M. K., Choi, S. Y., & Park, K. K. (2018). Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model. Molecular medicine reports, 17(5), 6632-6638.
  • Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., ... & Langston, J. W. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental health perspectives, 119(6), 866-872.
  • Terry, A. V., & Buccafusco, J. J. (2003). The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. Journal of Pharmacology and Experimental Therapeutics, 306(3), 821-827.
  • Trumbeckaite, S., Dauksiene, J., Bernatoniene, J., & Janulis, V. (2015). Knowledge, attitudes, and usage of apitherapy for disease prevention and treatment among undergraduate pharmacy students in Lithuania. Evidence‐Based Complementary and Alternative Medicine, 2015(1), 172502.
  • Uddin, M. B., Lee, B. H., Nikapitiya, C., Kim, J. H., Kim, T. H., Lee, H. C., ... & Kim, C. J. (2016). Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology, 54, 853-866.
  • Uzuner, S. Ç., Birinci, E., Tetikoğlu, S., Birinci, C., & Kolaylı, S. (2021). Distinct epigenetic reprogramming, mitochondrial patterns, cellular morphology, and cytotoxicity after bee venom treatment. Recent Patents on Anti-cancer Drug Discovery, 16(3), 377-392.
  • Wehbe, R., Frangieh, J., Rima, M., El Obeid, D., Sabatier, J. M., & Fajloun, Z. (2019). Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules, 24(16), 2997.
  • Van Eldik, L. J., Carrillo, M. C., Cole, P. E., Feuerbach, D., Greenberg, B. D., Hendrix, J. A., ... & Bales, K. (2016). The roles of inflammation and immune mechanisms in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2(2), 99-109.
  • Ye, M., Chung, H. S., Lee, C., Yoon, M. S., Yu, A. R., Kim, J. S., ... & Bae, H. (2016). Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease. Journal of neuroinflammation, 13, 1-12.
  • Ziai, M. R., Russek, S., Wang, H. C., Beer, B., & Blume, A. J. (1990). Mast cell degranulating peptide: a multi-functional neurotoxin. Journal of pharmacy and pharmacology, 42(7), 457-461.
  • Zuazo-Gaztelu, I., & Casanovas, O. (2018). Unraveling the role of angiogenesis in cancer ecosystems. Frontiers in Oncology, 8, 248.
  • Zurier, R. B., & Quagliata, F. (1971). Effect of prostaglandin E1 on adjuvant arthritis. Nature, 234(5327), 304-305. Zurier, R. B., Mitnick, H., Bloomgarden, D., & Weissmann, G. (1973). Effect of bee venom on experimental arthritis. Annals of the Rheumatic Diseases, 32(5), 466.

Arı Zehri ve Terapötik Kullanımı

Year 2024, Volume: 7 Issue: 2, 65 - 84, 29.12.2024
https://doi.org/10.35206/jan.1378226

Abstract

References

  • Aarsland, D., Creese, B., Politis, M., Chaudhuri, K. R., Ffytche, D. H., Weintraub, D., & Ballard, C. (2017). Cognitive decline in Parkinson disease. Nature Reviews Neurology, 13(4), 217-231.
  • Ali, M. A. A. S. M. (2012). Studies on bee venom and its medical uses. Int J Adv Res Technol, 1(2), 69-83.
  • Aksoz, E., Gocmez, S. S., Sahin, T. D., Aksit, D., Aksit, H., & Utkan, T. (2019). The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacological Reports, 71(5), 818-825.
  • Bachis, A., Cruz, M. I., & Mocchetti, I. (2010). M‐tropic HIV envelope protein gp120 exhibits a different neuropathological profile than T‐tropic gp120 in rat striatum. European Journal of Neuroscience, 32(4), 570-578.
  • Bond, C. T., Herson, P. S., Strassmaier, T., Hammond, R., Stackman, R., Maylie, J., & Adelman, J. P. (2004). Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. Journal of Neuroscience, 24(23), 5301-5306.
  • Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A., & Simal-Gandara, J. (2020). Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients, 12(11), 3360.
  • Cherniack, E. P., & Govorushko, S. (2018). To bee or not to bee: The potential efficacy and safety of bee venom acupuncture in humans. Toxicon, 154, 74-78.
  • de Matos Silva, L. F. C., de Paula Ramos, E. R., Ambiel, C. R., Correia-de-Sá, P., & Alves-Do-Prado, W. (2010). Apamin reduces neuromuscular transmission by activating inhibitory muscarinic M2 receptors on motor nerve terminals. European journal of pharmacology, 626(2-3), 239-243.
  • Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V., & Kokotos, G. (2011). Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chemical reviews, 111(10), 6130-6185.
  • Eiseman, J. L., Von Bredow, J., & Alvares, A. P. (1982). Effect of honeybee (Apis mellifera) venom on the course of adjuvant-induced arthritis and depression of drug metabolism in the rat. Biochemical pharmacology, 31(6), 1139-1146.
  • Fenard, D., Lambeau, G., Maurin, T., Lefebvre, J. C., & Doglio, A. (2001). A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Molecular pharmacology, 60(2), 341-347.
  • Garcia-Pastor, P., Randazzo, A., Gomez-Paloma, L., Alcaraz, M. J., & Paya, M. (1999). Effects of petrosaspongiolide M, a novel phospholipase A2 inhibitor, on acute and chronic inflammation. Journal of Pharmacology and experimental Therapeutics, 289(1), 166-172.
  • Goldman, J. G., Williams‐Gray, C., Barker, R. A., Duda, J. E., & Galvin, J. E. (2014). The spectrum of cognitive impairment in Lewy body diseases. Movement Disorders, 29(5), 608-621.
  • Hadjipetrou-Kourounakis, L., & Yiangou, M. (1984). Bee venom and adjuvant induced disease. The Journal of Rheumatology, 11(5), 720-720.
  • Hanson, J. M., Morley, J., & Soria-Herrera, C. (1974). Anti-inflammatory property of 401 (MCD-peptide), a peptide from the venom of the bee Apis mellifera (L.). British journal of pharmacology, 50(3), 383.
  • Hong, J., Lu, X., Deng, Z., Xiao, S., Yuan, B., & Yang, K. (2019). How melittin inserts into cell membrane: conformational changes, inter-peptide cooperation, and disturbance on the membrane. Molecules, 24(9), 1775.
  • Hood, J. L., Jallouk, A. P., Campbell, N., Ratner, L., & Wickline, S. A. (2013). Cytolytic nanoparticles attenuate HIV-1 infectivity. Antiviral therapy, 18(1), 95-103.
  • Huang, S., Jianhua, W. A. N. G., Xiaozhong, W. A. N. G., & Chenghong, L. I. (2016, December). Melittin: A key composition of honey bee venom with diverse pharmaceutical function. In International Conference on Biological Engineering and Pharmacy 2016 (BEP 2016) (pp. 193-197). Atlantis Press.
  • Iakovakis, D., Hadjidimitriou, S., Charisis, V., Bostantzopoulou, S., Katsarou, Z., & Hadjileontiadis, L. J. (2018). Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson’s disease. Scientific reports, 8(1), 1-13.
  • Jaarsma, D., Haasdijk, E. D., Grashorn, J. A. C., Hawkins, R., van Duijn, W., Verspaget, H. W., ... & Holstege, J. C. (2000). Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiology of disease, 7(6), 623-643.
  • Jo, M., Park, M. H., Kollipara, P. S., An, B. J., Song, H. S., Han, S. B., ... & Hong, J. T. (2012). Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicology and applied pharmacology, 258(1), 72-81.
  • Jung, G. B., Huh, J. E., Lee, H. J., Kim, D., Lee, G. J., Park, H. K., & Lee, J. D. (2018). Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomedical optics express, 9(11), 5703-5718.
  • Kang, S. S., Pak, S. C., & Choi, S. H. (2002). The effect of whole bee venom on arthritis. The American journal of Chinese medicine, 30(01), 73-80.
  • Khalil, W. K., Assaf, N., ElShebiney, S. A., & Salem, N. A. (2015). Neuroprotective effects of bee venom acupuncture therapy against rotenone-induced oxidative stress and apoptosis. Neurochemistry international, 80, 79-86.
  • Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 4, 575-590.
  • Klocek, G., Schulthess, T., Shai, Y., & Seelig, J. (2009). Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation. Biochemistry, 48(12), 2586-2596.
  • Krell, R. (1996). Value-added products from beekeeping (No. 124). Food & Agriculture Org.. Lambeau, G., Barhanin, J., Schweitz, H., Qar, J. A. N. T. I., & Lazdunski, M. (1989). Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. Journal of Biological Chemistry, 264(19), 11503-11510.
  • Lambeau, G. A., Schmid-Alliana, A., Lazdunski, M., & Barhanin, J. (1990). Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. Journal of Biological Chemistry, 265(16), 9526-9532.
  • Lamy, C., Goodchild, S. J., Weatherall, K. L., Jane, D. E., Liégeois, J. F., Seutin, V., & Marrion, N. V. (2010). Allosteric block of KCa2 channels by apamin. Journal of Biological Chemistry, 285(35), 27067-27077.
  • Lee, J. Y., Kang, S. S., Kim, J. H., Bae, C. S., & Choi, S. H. (2005). Inhibitory effect of whole bee venom in adjuvant-induced arthritis. in vivo, 19(4), 801-805.
  • Lee, G., & Bae, H. (2016). Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules, 21(5), 616.
  • Lee, W. R., Pak, S. C., & Park, K. K. (2015). The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins, 7(11), 4758-4772.
  • Lee, Y. M., Cho, S. N., Son, E., Song, C. H., & Kim, D. S. (2020). Apamin from bee venom suppresses inflammation in a murine model of gouty arthritis. Journal of ethnopharmacology, 257, 112860.
  • Lim, H. N., Baek, S. B., & Jung, H. J. (2019). Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways. Molecules, 24(5), 929.
  • Liu, X., Chen, D., Xie, L., & Zhang, R. (2002). Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in‐vitro and growth of murine B16 melanomas in‐vivo. Journal of pharmacy and pharmacology, 54(8), 1083-1089.
  • Memariani, H., Memariani, M., Moravvej, H., & Shahidi-Dadras, M. (2020). Melittin: a venom-derived peptide with promising anti-viral properties. European Journal of Clinical Microbiology & Infectious Diseases, 39(1), 5-17.
  • Palma, M. S. (2013). Hymenoptera insect peptides. Handbook of biologically active peptides, 416-422. Park, H. J., Lee, S. H., Son, D. J., Oh, K. W., Kim, K. H., Song, H. S., ... & Hong, J. T. (2004). Antiarthritic effect of bee venom: Inhibition of inflammation mediator generation by suppression of NF‐κB through interaction with the p50 subunit. Arthritis & rheumatism, 50(11), 3504-3515.
  • Park, M. H., Choi, M. S., Kwak, D. H., Oh, K. W., Yoon, D. Y., Han, S. B., ... & Hong, J. T. (2011). Anti‐cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF‐κB. The Prostate, 71(8), 801-812.
  • Rached, I. C. F. S., Castro, F. M., Guzzo, M. L., & de Mello, S. B. V. (2010). Anti-inflammatory effect of bee venom on antigen-induced arthritis in rabbits: influence of endogenous glucocorticoids. Journal of ethnopharmacology, 130(1), 175-178.
  • Rajabi, M., & Mousa, S. A. (2017). The role of angiogenesis in cancer treatment. Biomedicines, 5(2), 34. Rajagopalan, V., & Pioro, E. P. (2019). Unbiased MRI analyses identify micropathologic differences between upper motor neuron-predominant ALS phenotypes. Frontiers in Neuroscience, 13, 704.
  • Rose, A. (1994). Bees in balance. Starboint Enterprises, Ltd, Bethesda, Maryland.
  • Samel, M., Vija, H., Kurvet, I., Künnis-Beres, K., Trummal, K., Subbi, J., ... & Siigur, J. (2013). Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins, 5(2), 203-223.
  • Sharma, H. C., & Singh, O. P. (1983). Medicinal properties of some lesser known but important bee products. Shin, S. H., Ye, M. K., Choi, S. Y., & Park, K. K. (2018). Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model. Molecular medicine reports, 17(5), 6632-6638.
  • Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., ... & Langston, J. W. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental health perspectives, 119(6), 866-872.
  • Terry, A. V., & Buccafusco, J. J. (2003). The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. Journal of Pharmacology and Experimental Therapeutics, 306(3), 821-827.
  • Trumbeckaite, S., Dauksiene, J., Bernatoniene, J., & Janulis, V. (2015). Knowledge, attitudes, and usage of apitherapy for disease prevention and treatment among undergraduate pharmacy students in Lithuania. Evidence‐Based Complementary and Alternative Medicine, 2015(1), 172502.
  • Uddin, M. B., Lee, B. H., Nikapitiya, C., Kim, J. H., Kim, T. H., Lee, H. C., ... & Kim, C. J. (2016). Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. Journal of Microbiology, 54, 853-866.
  • Uzuner, S. Ç., Birinci, E., Tetikoğlu, S., Birinci, C., & Kolaylı, S. (2021). Distinct epigenetic reprogramming, mitochondrial patterns, cellular morphology, and cytotoxicity after bee venom treatment. Recent Patents on Anti-cancer Drug Discovery, 16(3), 377-392.
  • Wehbe, R., Frangieh, J., Rima, M., El Obeid, D., Sabatier, J. M., & Fajloun, Z. (2019). Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules, 24(16), 2997.
  • Van Eldik, L. J., Carrillo, M. C., Cole, P. E., Feuerbach, D., Greenberg, B. D., Hendrix, J. A., ... & Bales, K. (2016). The roles of inflammation and immune mechanisms in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2(2), 99-109.
  • Ye, M., Chung, H. S., Lee, C., Yoon, M. S., Yu, A. R., Kim, J. S., ... & Bae, H. (2016). Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer’s disease. Journal of neuroinflammation, 13, 1-12.
  • Ziai, M. R., Russek, S., Wang, H. C., Beer, B., & Blume, A. J. (1990). Mast cell degranulating peptide: a multi-functional neurotoxin. Journal of pharmacy and pharmacology, 42(7), 457-461.
  • Zuazo-Gaztelu, I., & Casanovas, O. (2018). Unraveling the role of angiogenesis in cancer ecosystems. Frontiers in Oncology, 8, 248.
  • Zurier, R. B., & Quagliata, F. (1971). Effect of prostaglandin E1 on adjuvant arthritis. Nature, 234(5327), 304-305. Zurier, R. B., Mitnick, H., Bloomgarden, D., & Weissmann, G. (1973). Effect of bee venom on experimental arthritis. Annals of the Rheumatic Diseases, 32(5), 466.
There are 54 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Review Articles
Authors

Hassan Morovvati 0000-0003-0275-1636

Haydeh Keyhan 0009-0005-1577-1662

Mohammad Kazem Koohi 0000-0001-8598-3824

Jalal Hassan 0000-0002-9000-2821

Publication Date December 29, 2024
Submission Date October 26, 2023
Acceptance Date April 1, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Morovvati, H., Keyhan, H., Koohi, M. K., Hassan, J. (2024). Bee Venom and Its Therapeutic Uses. Journal of Apitherapy and Nature, 7(2), 65-84. https://doi.org/10.35206/jan.1378226
AMA Morovvati H, Keyhan H, Koohi MK, Hassan J. Bee Venom and Its Therapeutic Uses. J.Apit.Nat. December 2024;7(2):65-84. doi:10.35206/jan.1378226
Chicago Morovvati, Hassan, Haydeh Keyhan, Mohammad Kazem Koohi, and Jalal Hassan. “Bee Venom and Its Therapeutic Uses”. Journal of Apitherapy and Nature 7, no. 2 (December 2024): 65-84. https://doi.org/10.35206/jan.1378226.
EndNote Morovvati H, Keyhan H, Koohi MK, Hassan J (December 1, 2024) Bee Venom and Its Therapeutic Uses. Journal of Apitherapy and Nature 7 2 65–84.
IEEE H. Morovvati, H. Keyhan, M. K. Koohi, and J. Hassan, “Bee Venom and Its Therapeutic Uses”, J.Apit.Nat., vol. 7, no. 2, pp. 65–84, 2024, doi: 10.35206/jan.1378226.
ISNAD Morovvati, Hassan et al. “Bee Venom and Its Therapeutic Uses”. Journal of Apitherapy and Nature 7/2 (December 2024), 65-84. https://doi.org/10.35206/jan.1378226.
JAMA Morovvati H, Keyhan H, Koohi MK, Hassan J. Bee Venom and Its Therapeutic Uses. J.Apit.Nat. 2024;7:65–84.
MLA Morovvati, Hassan et al. “Bee Venom and Its Therapeutic Uses”. Journal of Apitherapy and Nature, vol. 7, no. 2, 2024, pp. 65-84, doi:10.35206/jan.1378226.
Vancouver Morovvati H, Keyhan H, Koohi MK, Hassan J. Bee Venom and Its Therapeutic Uses. J.Apit.Nat. 2024;7(2):65-84.

  • Google Akademik (Google Scholar)
  • idealonline
  • Directory of Research Journal Indexing (DRJI)
  • Asos İndeks