Bu derleme makalesi, lityum iyon pillerin antik çağlardan günümüze kadar olan tarihsel gelişimini, çalışma prensiplerini, avantajlarını, dezavantajlarını ve gelecekteki potansiyelini incelemektedir. Lityum iyon piller, yüksek enerji yoğunluğu, uzun çevrim ömrü ve düşük kendi kendine deşarj oranı gibi avantajları sayesinde taşınabilir elektronik cihazlardan elektrikli araçlara ve yenilenebilir enerji depolama sistemlerine kadar çeşitli alanlarda kullanılmaktadır. Bu teknolojinin geleceği, malzeme bilimi, pil tasarımı ve üretim süreçlerindeki yeniliklerle şekillenecektir. Katı hal piller, lityum-sülfür piller ve sodyum-iyon piller gibi alternatif teknolojiler de gelecekte enerji depolama alanında önemli bir rol oynayabilir.
Abdelaal, M. M., & Alkhedher, M. (2024). Dual optimization of LiFePO4 cathode performance using manganese substitution and a hybrid lithiated Nafion-modified PEDOT:PSS coating layer for lithium-ion batteries. Electrochimica Acta, 506, 145050. https://doi.org/10.1016/J.ELECTACTA.2024.145050
Ahmed, S., Nelson, P. A., Gallagher, K. G., Susarla, N., & Dees, D. W. (2017). Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of Power Sources, 342, 733-740. https://doi.org/10.1016/J.JPOWSOUR.2016.12.069
Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature 2008 451:7179, 451(7179), 652-657. https://doi.org/10.1038/451652a
Arya, S., & Verma, S. (2020). Nickel‐Metal Hydride (Ni‐MH) Batteries. Içinde Rechargeable Batteries. https://doi.org/10.1002/9781119714774.ch8
Aslam, M. K., Niu, Y., Hussain, T., Tabassum, H., Tang, W., Xu, M., & Ahuja, R. (2021). How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 86, 106142. https://doi.org/10.1016/J.NANOEN.2021.106142
Babu, B. (2024). Self-discharge in rechargeable electrochemical energy storage devices. Energy Storage Materials, 67, 103261. https://doi.org/10.1016/J.ENSM.2024.103261
Bates, A. M., Preger, Y., Torres-Castro, L., Harrison, K. L., Harris, S. J., & Hewson, J. (2022). Are solid-state batteries safer than lithium-ion batteries? Içinde Joule (C. 6, Sayı 4). https://doi.org/10.1016/j.joule.2022.02.007
Bi, C. X., Hou, L. P., Li, Z., Zhao, M., Zhang, X. Q., Li, B. Q., Zhang, Q., & Huang, J. Q. (2023). Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Material Advances, 4. https://doi.org/10.34133/energymatadv.0010
Castillo, J., Coca-Clemente, J. A., Rikarte, J., Sáenz De Buruaga, A., Santiago, A., & Li, C. (2023). Recent progress on lithium anode protection for lithium-sulfur batteries: Review and perspective. Içinde APL Materials (C. 11, Sayı 1). https://doi.org/10.1063/5.0107648
Cecchini, R., & Pelosi, G. (1992). From the Historian--Alessandro Volta and his battery. IEEE Antennas and Propagation Magazine, 34(2). https://doi.org/10.1109/74.134307
Cen, Y., Sisson, R. D., Qin, Q., & Liang, J. (2018). Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries. C 2018, Vol. 4, Page 18, 4(1), 18. https://doi.org/10.3390/C4010018
Chawla, N., Bharti, N., & Singh, S. (2019). Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, Vol. 5, Page 19, 5(1), 19. https://doi.org/10.3390/BATTERIES5010019
Choi, S. Il, Jung, E. J., Park, M., Shin, H. S., Huh, S., & Won, Y. S. (2020). Phase-dependent performance of lotus-root shaped TiO2 anode for lithium-ion batteries (LIBs). Applied Surface Science, 508, 145237. https://doi.org/10.1016/J.APSUSC.2019.145237
Chombo, P. V., & Laoonual, Y. (2020). A review of safety strategies of a Li-ion battery. Journal of Power Sources, 478, 228649. https://doi.org/10.1016/J.JPOWSOUR.2020.228649
Costa, C. M., Gonçalves, R., & Lanceros-Méndez, S. (2019). Advances in Cathode Nanomaterials for Lithium-Ion Batteries. Içinde Nanostructured Materials for Next-Generation Energy Storage and Conversion (ss. 105-145). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-58675-4_3
Crabtree, G., Kócs, E., & Trahey, L. (2015). The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 40(12). https://doi.org/10.1557/mrs.2015.259
Das, D., Manna, S., & Puravankara, S. (2023). Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries—A Review. Içinde Batteries (C. 9, Sayı 4). https://doi.org/10.3390/batteries9040193
Dong, B., Poletayev, A. D., Cottom, J. P., Castells-Gil, J., Spencer, B. F., Li, C., Zhu, P., Chen, Y., Price, J. M., Driscoll, L. L., Allan, P. K., Kendrick, E., Islam, M. S., & Slater, P. R. (2024). Effects of sulfate modification of stoichiometric and lithium-rich LiNiO2 cathode materials. Journal of Materials Chemistry A, 12(19), 11390-11402. https://doi.org/10.1039/D4TA00284A
Dufo-López, R., Cortés-Arcos, T., Artal-Sevil, J. S., & Bernal-Agustín, J. L. (2021). Comparison of Lead-Acid and Li-Ion Batteries Lifetime Prediction Models in Stand-Alone Photovoltaic Systems. Applied Sciences 2021, Vol. 11, Page 1099, 11(3), 1099. https://doi.org/10.3390/APP11031099
Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928-935. https://doi.org/10.1126/SCIENCE.1212741/SUPPL_FILE/DUNN-SOM.PDF
El Kharbachi, A., Zavorotynska, O., Latroche, M., Cuevas, F., Yartys, V., & Fichtner, M. (2020). Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 817, 153261. https://doi.org/10.1016/J.JALLCOM.2019.153261
Fan, X., Sun, W., Meng, F., Xing, A., & Liu, J. (2018). Advanced chemical strategies for lithium–sulfur batteries: A review. Içinde Green Energy and Environment (C. 3, Sayı 1). https://doi.org/10.1016/j.gee.2017.08.002
Gandoman, F. H., Jaguemont, J., Goutam, S., Gopalakrishnan, R., Firouz, Y., Kalogiannis, T., Omar, N., & Van Mierlo, J. (2019). Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Applied Energy, 251, 113343. https://doi.org/10.1016/J.APENERGY.2019.113343
Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167-1176. https://doi.org/10.1021/JA3091438/ASSET/IMAGES/JA-2012-091438_M014.GIF
Guo, B., Ji, X., Wang, W., Chen, X., Wang, P., Wang, L., & Bai, J. (2021). Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B: Engineering, 208, 108598. https://doi.org/10.1016/J.COMPOSITESB.2020.108598
Haregewoin, A. M., Wotango, A. S., & Hwang, B. J. (2016). Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 9(6), 1955-1988. https://doi.org/10.1039/C6EE00123H
Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature 2019 575:7781, 575(7781), 75-86. https://doi.org/10.1038/s41586-019-1682-5
Iturrondobeitia, A., Aguesse, F., Genies, S., Waldmann, T., Kasper, M., Ghanbari, N., Wohlfahrt-Mehrens, M., & Bekaert, E. (2017). Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application. Journal of Physical Chemistry C, 121(40). https://doi.org/10.1021/acs.jpcc.7b05416
Kaushik, S., Chand, P., & Sharma, S. (2024). High-performance pristine ZIF-67 asymmetric supercapacitor device with excellent energy and power density for energy storage application. Electrochimica Acta, 497, 144565. https://doi.org/10.1016/J.ELECTACTA.2024.144565
Kim, H. J., Krishna, T. N. V., Zeb, K., Rajangam, V., Muralee Gopi, C. V. V., Sambasivam, S., Raghavendra, K. V. G., & Obaidat, I. M. (2020). A comprehensive review of li-ion battery materials and their recycling techniques. Içinde Electronics (Switzerland) (C. 9, Sayı 7). https://doi.org/10.3390/electronics9071161
Kordesch, K., & Taucher-Mautner, W. (2009). Primary Batteries - Aqueous Systems | Leclanché and Zinc-Carbon. Içinde Encyclopedia of Electrochemical Power Sources. https://doi.org/10.1016/B978-044452745-5.00097-6
Lanjan, A., Ghalami Choobar, B., & Amjad-Iranagh, S. (2020). Promoting lithium-ion battery performance by application of crystalline cathodes LixMn1−zFezPO4. Journal of Solid State Electrochemistry, 24(1), 157-171. https://doi.org/10.1007/S10008-019-04480-6/TABLES/5
Larcher, D., & Tarascon, J. M. (2014). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2014 7:1, 7(1), 19-29. https://doi.org/10.1038/nchem.2085
Leng, F., Tan, C. M., & Pecht, M. (2015). Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Scientific Reports 2015 5:1, 5(1), 1-12. https://doi.org/10.1038/srep12967
Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium-Ion Batteries. Advanced Materials, 30(33), 1800561. https://doi.org/10.1002/ADMA.201800561
Li, T., Huang, M., Bai, X., & Wang, Y. X. (2023). Metal–air batteries: A review on current status and future applications. Içinde Progress in Natural Science: Materials International (C. 33, Sayı 2). https://doi.org/10.1016/j.pnsc.2023.05.007
Liang, H., Zuo, X., Zhang, L., Huang, W., Chen, Q., Zhu, T., Liu, J., & Nan, J. (2020). Nonflammable LiTFSI-Ethylene Carbonate/1,2-Dimethoxyethane Electrolyte for High-Safety Li-ion Batteries. Journal of The Electrochemical Society, 167(9), 090520. https://doi.org/10.1149/1945-7111/AB8803
Lu, X., & Anariba, F. (2014). Fostering innovation through an active learning activity inspired by the baghdad battery. Journal of Chemical Education, 91(11), 1929-1933. https://doi.org/10.1021/ED400869C/SUPPL_FILE/ED400869C_SI_002.DOCX
Luo, J., Zhao, X., Wu, J., Jang, H. D., Kung, H. H., & Huang, J. (2012). Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. Journal of Physical Chemistry Letters, 3(13), 1824-1829. https://doi.org/10.1021/JZ3006892/SUPPL_FILE/JZ3006892_SI_001.PDF
Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., Wang, M., Chen, R., Xu, L., Zhou, J., Lu, Y., & Guo, B. (2021). An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Içinde Advanced Energy Materials (C. 11, Sayı 2). https://doi.org/10.1002/aenm.202000982
Marino, C., Boulet, L., Gaveau, P., Fraisse, B., & Monconduit, L. (2012). Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. Journal of Materials Chemistry, 22(42), 22713-22720. https://doi.org/10.1039/C2JM34562E
McDowell, M. T., Lee, S. W., Nix, W. D., & Cui, Y. (2013). 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Advanced Materials, 25(36), 4966-4985. https://doi.org/10.1002/ADMA.201301795
Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
Moradi, Z., Lanjan, A., Tyagi, R., & Srinivasan, S. (2023). Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, 109048. https://doi.org/10.1016/J.EST.2023.109048
Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/J.MATTOD.2014.10.040
Niu, H., Zhang, N., Lu, Y., Zhang, Z., Li, M., Liu, J., Song, W., Zhao, Y., & Miao, Z. (2024). Strategies toward the development of high-energy-density lithium batteries. Journal of Energy Storage, 88, 111666. https://doi.org/10.1016/J.EST.2024.111666
Olabi, A. G., Sayed, E. T., Wilberforce, T., Jamal, A., Alami, A. H., Elsaid, K., Rahman, S. M. A., Shah, S. K., & Abdelkareem, M. A. (2021). Metal-air batteries—a review. Içinde Energies (C. 14, Sayı 21). https://doi.org/10.3390/en14217373
Orangi, S., Manjong, N., Clos, D. P., Usai, L., Burheim, O. S., & Strømman, A. H. (2024). Historical and prospective lithium-ion battery cost trajectories from a bottom-up production modeling perspective. Journal of Energy Storage, 76, 109800. https://doi.org/10.1016/J.EST.2023.109800
Ozanam, F., & Rosso, M. (2016). Silicon as anode material for Li-ion batteries. Materials Science and Engineering: B, 213, 2-11. https://doi.org/10.1016/J.MSEB.2016.04.016
Pan, F., & Wang, Q. (2015). Redox species of redox flow batteries: A review. Içinde Molecules (C. 20, Sayı 11). https://doi.org/10.3390/molecules201119711
Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., & Slabon, A. (2021). Sustainable Li-Ion Batteries: Chemistry and Recycling. Advanced Energy Materials, 11(43), 2003456. https://doi.org/10.1002/AENM.202003456
Rahman, Md. A., Wang, X., & Wen, C. (2013). High Energy Density Metal-Air Batteries: A Review. Journal of The Electrochemical Society, 160(10). https://doi.org/10.1149/2.062310jes
Rajkamal, A., & Thapa, R. (2019). Carbon Allotropes as Anode Material for Lithium-Ion Batteries. Advanced Materials Technologies, 4(10), 1900307. https://doi.org/10.1002/ADMT.201900307
Ramkumar, M. S., Reddy, C. S. R., Ramakrishnan, A., Raja, K., Pushpa, S., Jose, S., & Jayakumar, M. (2022). Review on Li-Ion Battery with Battery Management System in Electrical Vehicle. Advances in Materials Science and Engineering, 2022(1), 3379574. https://doi.org/10.1155/2022/3379574
Sasaki, T., Ukyo, Y., & Novák, P. (2013). Memory effect in a lithium-ion battery. Nature Materials 2013 12:6, 12(6), 569-575. https://doi.org/10.1038/nmat3623
Schmaltz, T., Hartmann, F., Wicke, T., Weymann, L., Neef, C., & Janek, J. (2023). A Roadmap for Solid-State Batteries. Advanced Energy Materials, 13(43). https://doi.org/10.1002/aenm.202301886
Tsai, P. J., & Chan, S. L. I. (2013). Nickel-based batteries: materials and chemistry. Içinde Electricity Transmission, Distribution and Storage Systems. https://doi.org/10.1533/9780857097378.3.309
Ventosa, E., Löffler, T., La Mantia, F., & Schuhmann, W. (2016). Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO2 upon hydrogen annealing. Chemical Communications, 52(77), 11524-11526. https://doi.org/10.1039/C6CC06070F
Wang, Q., Zou, R., Xia, W., Ma, J., Qiu, B., Mahmood, A., Zhao, R., Yang, Y., Xia, D., & Xu, Q. (2015). Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Small, 11(21), 2511-2517. https://doi.org/10.1002/SMLL.201403579
Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J., & Lu, L. (2019). Development of solid-state electrolytes for sodium-ion battery–A short review. Nano Materials Science, 1(2). https://doi.org/10.1016/j.nanoms.2019.02.007
Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T., & Liu, Q. (2011). Redox flow batteries: A review. Içinde Journal of Applied Electrochemistry (C. 41, Sayı 10). https://doi.org/10.1007/s10800-011-0348-2
Whittingham, M. S. (1974). Electrointercalation in transition-metal disulphides. Journal of the Chemical Society, Chemical Communications, 9, 328-329. https://doi.org/10.1039/C39740000328
Winter, M., Barnett, B., & Xu, K. (2018). Before Li Ion Batteries. Chemical Reviews, 118(23), 11433-11456. https://doi.org/10.1021/ACS.CHEMREV.8B00422/ASSET/IMAGES/LARGE/CR-2018-00422Q_0014.JPEG
Yu, S., Guo, B., Zeng, T., Qu, H., Yang, J., & Bai, J. (2022). Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Composites Part B: Engineering, 246, 110232. https://doi.org/10.1016/J.COMPOSITESB.2022.110232
Yuan, H., Luan, J., Liu, J., & Zhong, C. (2024). Hail to Daniell Cell: From Electrometallurgy to Electrochemical Energy Storage. Içinde Advanced Functional Materials (C. 34, Sayı 33). https://doi.org/10.1002/adfm.202400289
Yue, L., Ma, J., Zhang, J., Zhao, J., Dong, S., Liu, Z., Cui, G., & Chen, L. (2016). All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 5, 139-164. https://doi.org/10.1016/J.ENSM.2016.07.003
Zhang, J., Huang, H., Zhang, G., Dai, Z., Wen, Y., & Jiang, L. (2024). Cycle life studies of lithium-ion power batteries for electric vehicles: A review. Journal of Energy Storage, 93, 112231. https://doi.org/10.1016/J.EST.2024.112231
Zhang, S. S. (2007). A review on the separators of liquid electrolyte Li-ion batteries. Içinde Journal of Power Sources (C. 164, Sayı 1). https://doi.org/10.1016/j.jpowsour.2006.10.065
Zhao, E., Gu, Y., Fang, S., Yang, L., & Hirano, S. I. (2021). Systematic Investigation of Electrochemical Performances for Lithium-Ion Batteries with Si/Graphite Anodes: Effect of Electrolytes Based on Fluoroethylene Carbonate and Linear Carbonates. ACS Applied Energy Materials, 4(3), 2419-2429. https://doi.org/10.1021/ACSAEM.0C02946/ASSET/IMAGES/LARGE/AE0C02946_0009.JPEG
Zhu, L., & Chen, M. (2020). Research on spent LiFePO4 electric vehicle battery disposal and its life cycle inventory collection in China. International Journal of Environmental Research and Public Health, 17(23). https://doi.org/10.3390/ijerph17238828
Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308. https://doi.org/10.1016/J.RSER.2018.03.002
Abdelaal, M. M., & Alkhedher, M. (2024). Dual optimization of LiFePO4 cathode performance using manganese substitution and a hybrid lithiated Nafion-modified PEDOT:PSS coating layer for lithium-ion batteries. Electrochimica Acta, 506, 145050. https://doi.org/10.1016/J.ELECTACTA.2024.145050
Ahmed, S., Nelson, P. A., Gallagher, K. G., Susarla, N., & Dees, D. W. (2017). Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of Power Sources, 342, 733-740. https://doi.org/10.1016/J.JPOWSOUR.2016.12.069
Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature 2008 451:7179, 451(7179), 652-657. https://doi.org/10.1038/451652a
Arya, S., & Verma, S. (2020). Nickel‐Metal Hydride (Ni‐MH) Batteries. Içinde Rechargeable Batteries. https://doi.org/10.1002/9781119714774.ch8
Aslam, M. K., Niu, Y., Hussain, T., Tabassum, H., Tang, W., Xu, M., & Ahuja, R. (2021). How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 86, 106142. https://doi.org/10.1016/J.NANOEN.2021.106142
Babu, B. (2024). Self-discharge in rechargeable electrochemical energy storage devices. Energy Storage Materials, 67, 103261. https://doi.org/10.1016/J.ENSM.2024.103261
Bates, A. M., Preger, Y., Torres-Castro, L., Harrison, K. L., Harris, S. J., & Hewson, J. (2022). Are solid-state batteries safer than lithium-ion batteries? Içinde Joule (C. 6, Sayı 4). https://doi.org/10.1016/j.joule.2022.02.007
Bi, C. X., Hou, L. P., Li, Z., Zhao, M., Zhang, X. Q., Li, B. Q., Zhang, Q., & Huang, J. Q. (2023). Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Material Advances, 4. https://doi.org/10.34133/energymatadv.0010
Castillo, J., Coca-Clemente, J. A., Rikarte, J., Sáenz De Buruaga, A., Santiago, A., & Li, C. (2023). Recent progress on lithium anode protection for lithium-sulfur batteries: Review and perspective. Içinde APL Materials (C. 11, Sayı 1). https://doi.org/10.1063/5.0107648
Cecchini, R., & Pelosi, G. (1992). From the Historian--Alessandro Volta and his battery. IEEE Antennas and Propagation Magazine, 34(2). https://doi.org/10.1109/74.134307
Cen, Y., Sisson, R. D., Qin, Q., & Liang, J. (2018). Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries. C 2018, Vol. 4, Page 18, 4(1), 18. https://doi.org/10.3390/C4010018
Chawla, N., Bharti, N., & Singh, S. (2019). Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, Vol. 5, Page 19, 5(1), 19. https://doi.org/10.3390/BATTERIES5010019
Choi, S. Il, Jung, E. J., Park, M., Shin, H. S., Huh, S., & Won, Y. S. (2020). Phase-dependent performance of lotus-root shaped TiO2 anode for lithium-ion batteries (LIBs). Applied Surface Science, 508, 145237. https://doi.org/10.1016/J.APSUSC.2019.145237
Chombo, P. V., & Laoonual, Y. (2020). A review of safety strategies of a Li-ion battery. Journal of Power Sources, 478, 228649. https://doi.org/10.1016/J.JPOWSOUR.2020.228649
Costa, C. M., Gonçalves, R., & Lanceros-Méndez, S. (2019). Advances in Cathode Nanomaterials for Lithium-Ion Batteries. Içinde Nanostructured Materials for Next-Generation Energy Storage and Conversion (ss. 105-145). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-58675-4_3
Crabtree, G., Kócs, E., & Trahey, L. (2015). The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 40(12). https://doi.org/10.1557/mrs.2015.259
Das, D., Manna, S., & Puravankara, S. (2023). Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries—A Review. Içinde Batteries (C. 9, Sayı 4). https://doi.org/10.3390/batteries9040193
Dong, B., Poletayev, A. D., Cottom, J. P., Castells-Gil, J., Spencer, B. F., Li, C., Zhu, P., Chen, Y., Price, J. M., Driscoll, L. L., Allan, P. K., Kendrick, E., Islam, M. S., & Slater, P. R. (2024). Effects of sulfate modification of stoichiometric and lithium-rich LiNiO2 cathode materials. Journal of Materials Chemistry A, 12(19), 11390-11402. https://doi.org/10.1039/D4TA00284A
Dufo-López, R., Cortés-Arcos, T., Artal-Sevil, J. S., & Bernal-Agustín, J. L. (2021). Comparison of Lead-Acid and Li-Ion Batteries Lifetime Prediction Models in Stand-Alone Photovoltaic Systems. Applied Sciences 2021, Vol. 11, Page 1099, 11(3), 1099. https://doi.org/10.3390/APP11031099
Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928-935. https://doi.org/10.1126/SCIENCE.1212741/SUPPL_FILE/DUNN-SOM.PDF
El Kharbachi, A., Zavorotynska, O., Latroche, M., Cuevas, F., Yartys, V., & Fichtner, M. (2020). Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 817, 153261. https://doi.org/10.1016/J.JALLCOM.2019.153261
Fan, X., Sun, W., Meng, F., Xing, A., & Liu, J. (2018). Advanced chemical strategies for lithium–sulfur batteries: A review. Içinde Green Energy and Environment (C. 3, Sayı 1). https://doi.org/10.1016/j.gee.2017.08.002
Gandoman, F. H., Jaguemont, J., Goutam, S., Gopalakrishnan, R., Firouz, Y., Kalogiannis, T., Omar, N., & Van Mierlo, J. (2019). Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Applied Energy, 251, 113343. https://doi.org/10.1016/J.APENERGY.2019.113343
Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167-1176. https://doi.org/10.1021/JA3091438/ASSET/IMAGES/JA-2012-091438_M014.GIF
Guo, B., Ji, X., Wang, W., Chen, X., Wang, P., Wang, L., & Bai, J. (2021). Highly flexible, thermally stable, and static dissipative nanocomposite with reduced functionalized graphene oxide processed through 3D printing. Composites Part B: Engineering, 208, 108598. https://doi.org/10.1016/J.COMPOSITESB.2020.108598
Haregewoin, A. M., Wotango, A. S., & Hwang, B. J. (2016). Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 9(6), 1955-1988. https://doi.org/10.1039/C6EE00123H
Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature 2019 575:7781, 575(7781), 75-86. https://doi.org/10.1038/s41586-019-1682-5
Iturrondobeitia, A., Aguesse, F., Genies, S., Waldmann, T., Kasper, M., Ghanbari, N., Wohlfahrt-Mehrens, M., & Bekaert, E. (2017). Post-Mortem Analysis of Calendar-Aged 16 Ah NMC/Graphite Pouch Cells for EV Application. Journal of Physical Chemistry C, 121(40). https://doi.org/10.1021/acs.jpcc.7b05416
Kaushik, S., Chand, P., & Sharma, S. (2024). High-performance pristine ZIF-67 asymmetric supercapacitor device with excellent energy and power density for energy storage application. Electrochimica Acta, 497, 144565. https://doi.org/10.1016/J.ELECTACTA.2024.144565
Kim, H. J., Krishna, T. N. V., Zeb, K., Rajangam, V., Muralee Gopi, C. V. V., Sambasivam, S., Raghavendra, K. V. G., & Obaidat, I. M. (2020). A comprehensive review of li-ion battery materials and their recycling techniques. Içinde Electronics (Switzerland) (C. 9, Sayı 7). https://doi.org/10.3390/electronics9071161
Kordesch, K., & Taucher-Mautner, W. (2009). Primary Batteries - Aqueous Systems | Leclanché and Zinc-Carbon. Içinde Encyclopedia of Electrochemical Power Sources. https://doi.org/10.1016/B978-044452745-5.00097-6
Lanjan, A., Ghalami Choobar, B., & Amjad-Iranagh, S. (2020). Promoting lithium-ion battery performance by application of crystalline cathodes LixMn1−zFezPO4. Journal of Solid State Electrochemistry, 24(1), 157-171. https://doi.org/10.1007/S10008-019-04480-6/TABLES/5
Larcher, D., & Tarascon, J. M. (2014). Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry 2014 7:1, 7(1), 19-29. https://doi.org/10.1038/nchem.2085
Leng, F., Tan, C. M., & Pecht, M. (2015). Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Scientific Reports 2015 5:1, 5(1), 1-12. https://doi.org/10.1038/srep12967
Li, M., Lu, J., Chen, Z., & Amine, K. (2018). 30 Years of Lithium-Ion Batteries. Advanced Materials, 30(33), 1800561. https://doi.org/10.1002/ADMA.201800561
Li, T., Huang, M., Bai, X., & Wang, Y. X. (2023). Metal–air batteries: A review on current status and future applications. Içinde Progress in Natural Science: Materials International (C. 33, Sayı 2). https://doi.org/10.1016/j.pnsc.2023.05.007
Liang, H., Zuo, X., Zhang, L., Huang, W., Chen, Q., Zhu, T., Liu, J., & Nan, J. (2020). Nonflammable LiTFSI-Ethylene Carbonate/1,2-Dimethoxyethane Electrolyte for High-Safety Li-ion Batteries. Journal of The Electrochemical Society, 167(9), 090520. https://doi.org/10.1149/1945-7111/AB8803
Lu, X., & Anariba, F. (2014). Fostering innovation through an active learning activity inspired by the baghdad battery. Journal of Chemical Education, 91(11), 1929-1933. https://doi.org/10.1021/ED400869C/SUPPL_FILE/ED400869C_SI_002.DOCX
Luo, J., Zhao, X., Wu, J., Jang, H. D., Kung, H. H., & Huang, J. (2012). Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. Journal of Physical Chemistry Letters, 3(13), 1824-1829. https://doi.org/10.1021/JZ3006892/SUPPL_FILE/JZ3006892_SI_001.PDF
Lyu, Y., Wu, X., Wang, K., Feng, Z., Cheng, T., Liu, Y., Wang, M., Chen, R., Xu, L., Zhou, J., Lu, Y., & Guo, B. (2021). An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Içinde Advanced Energy Materials (C. 11, Sayı 2). https://doi.org/10.1002/aenm.202000982
Marino, C., Boulet, L., Gaveau, P., Fraisse, B., & Monconduit, L. (2012). Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. Journal of Materials Chemistry, 22(42), 22713-22720. https://doi.org/10.1039/C2JM34562E
McDowell, M. T., Lee, S. W., Nix, W. D., & Cui, Y. (2013). 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Advanced Materials, 25(36), 4966-4985. https://doi.org/10.1002/ADMA.201301795
Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
Moradi, Z., Lanjan, A., Tyagi, R., & Srinivasan, S. (2023). Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, 109048. https://doi.org/10.1016/J.EST.2023.109048
Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/J.MATTOD.2014.10.040
Niu, H., Zhang, N., Lu, Y., Zhang, Z., Li, M., Liu, J., Song, W., Zhao, Y., & Miao, Z. (2024). Strategies toward the development of high-energy-density lithium batteries. Journal of Energy Storage, 88, 111666. https://doi.org/10.1016/J.EST.2024.111666
Olabi, A. G., Sayed, E. T., Wilberforce, T., Jamal, A., Alami, A. H., Elsaid, K., Rahman, S. M. A., Shah, S. K., & Abdelkareem, M. A. (2021). Metal-air batteries—a review. Içinde Energies (C. 14, Sayı 21). https://doi.org/10.3390/en14217373
Orangi, S., Manjong, N., Clos, D. P., Usai, L., Burheim, O. S., & Strømman, A. H. (2024). Historical and prospective lithium-ion battery cost trajectories from a bottom-up production modeling perspective. Journal of Energy Storage, 76, 109800. https://doi.org/10.1016/J.EST.2023.109800
Ozanam, F., & Rosso, M. (2016). Silicon as anode material for Li-ion batteries. Materials Science and Engineering: B, 213, 2-11. https://doi.org/10.1016/J.MSEB.2016.04.016
Pan, F., & Wang, Q. (2015). Redox species of redox flow batteries: A review. Içinde Molecules (C. 20, Sayı 11). https://doi.org/10.3390/molecules201119711
Piątek, J., Afyon, S., Budnyak, T. M., Budnyk, S., Sipponen, M. H., & Slabon, A. (2021). Sustainable Li-Ion Batteries: Chemistry and Recycling. Advanced Energy Materials, 11(43), 2003456. https://doi.org/10.1002/AENM.202003456
Rahman, Md. A., Wang, X., & Wen, C. (2013). High Energy Density Metal-Air Batteries: A Review. Journal of The Electrochemical Society, 160(10). https://doi.org/10.1149/2.062310jes
Rajkamal, A., & Thapa, R. (2019). Carbon Allotropes as Anode Material for Lithium-Ion Batteries. Advanced Materials Technologies, 4(10), 1900307. https://doi.org/10.1002/ADMT.201900307
Ramkumar, M. S., Reddy, C. S. R., Ramakrishnan, A., Raja, K., Pushpa, S., Jose, S., & Jayakumar, M. (2022). Review on Li-Ion Battery with Battery Management System in Electrical Vehicle. Advances in Materials Science and Engineering, 2022(1), 3379574. https://doi.org/10.1155/2022/3379574
Sasaki, T., Ukyo, Y., & Novák, P. (2013). Memory effect in a lithium-ion battery. Nature Materials 2013 12:6, 12(6), 569-575. https://doi.org/10.1038/nmat3623
Schmaltz, T., Hartmann, F., Wicke, T., Weymann, L., Neef, C., & Janek, J. (2023). A Roadmap for Solid-State Batteries. Advanced Energy Materials, 13(43). https://doi.org/10.1002/aenm.202301886
Tsai, P. J., & Chan, S. L. I. (2013). Nickel-based batteries: materials and chemistry. Içinde Electricity Transmission, Distribution and Storage Systems. https://doi.org/10.1533/9780857097378.3.309
Ventosa, E., Löffler, T., La Mantia, F., & Schuhmann, W. (2016). Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO2 upon hydrogen annealing. Chemical Communications, 52(77), 11524-11526. https://doi.org/10.1039/C6CC06070F
Wang, Q., Zou, R., Xia, W., Ma, J., Qiu, B., Mahmood, A., Zhao, R., Yang, Y., Xia, D., & Xu, Q. (2015). Facile Synthesis of Ultrasmall CoS2 Nanoparticles within Thin N-Doped Porous Carbon Shell for High Performance Lithium-Ion Batteries. Small, 11(21), 2511-2517. https://doi.org/10.1002/SMLL.201403579
Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J., & Lu, L. (2019). Development of solid-state electrolytes for sodium-ion battery–A short review. Nano Materials Science, 1(2). https://doi.org/10.1016/j.nanoms.2019.02.007
Weber, A. Z., Mench, M. M., Meyers, J. P., Ross, P. N., Gostick, J. T., & Liu, Q. (2011). Redox flow batteries: A review. Içinde Journal of Applied Electrochemistry (C. 41, Sayı 10). https://doi.org/10.1007/s10800-011-0348-2
Whittingham, M. S. (1974). Electrointercalation in transition-metal disulphides. Journal of the Chemical Society, Chemical Communications, 9, 328-329. https://doi.org/10.1039/C39740000328
Winter, M., Barnett, B., & Xu, K. (2018). Before Li Ion Batteries. Chemical Reviews, 118(23), 11433-11456. https://doi.org/10.1021/ACS.CHEMREV.8B00422/ASSET/IMAGES/LARGE/CR-2018-00422Q_0014.JPEG
Yu, S., Guo, B., Zeng, T., Qu, H., Yang, J., & Bai, J. (2022). Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Composites Part B: Engineering, 246, 110232. https://doi.org/10.1016/J.COMPOSITESB.2022.110232
Yuan, H., Luan, J., Liu, J., & Zhong, C. (2024). Hail to Daniell Cell: From Electrometallurgy to Electrochemical Energy Storage. Içinde Advanced Functional Materials (C. 34, Sayı 33). https://doi.org/10.1002/adfm.202400289
Yue, L., Ma, J., Zhang, J., Zhao, J., Dong, S., Liu, Z., Cui, G., & Chen, L. (2016). All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 5, 139-164. https://doi.org/10.1016/J.ENSM.2016.07.003
Zhang, J., Huang, H., Zhang, G., Dai, Z., Wen, Y., & Jiang, L. (2024). Cycle life studies of lithium-ion power batteries for electric vehicles: A review. Journal of Energy Storage, 93, 112231. https://doi.org/10.1016/J.EST.2024.112231
Zhang, S. S. (2007). A review on the separators of liquid electrolyte Li-ion batteries. Içinde Journal of Power Sources (C. 164, Sayı 1). https://doi.org/10.1016/j.jpowsour.2006.10.065
Zhao, E., Gu, Y., Fang, S., Yang, L., & Hirano, S. I. (2021). Systematic Investigation of Electrochemical Performances for Lithium-Ion Batteries with Si/Graphite Anodes: Effect of Electrolytes Based on Fluoroethylene Carbonate and Linear Carbonates. ACS Applied Energy Materials, 4(3), 2419-2429. https://doi.org/10.1021/ACSAEM.0C02946/ASSET/IMAGES/LARGE/AE0C02946_0009.JPEG
Zhu, L., & Chen, M. (2020). Research on spent LiFePO4 electric vehicle battery disposal and its life cycle inventory collection in China. International Journal of Environmental Research and Public Health, 17(23). https://doi.org/10.3390/ijerph17238828
Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308. https://doi.org/10.1016/J.RSER.2018.03.002
Pehlivan, H., Öz, E., & Yıldırım, M. (2024). Lityum İyon Pillerin Tarihten Bugüne Gelişimi ve Son Teknolojide Gelinen Nokta. Journal of Anatolian Physics and Astronomy, 3(2), 83-94. https://doi.org/10.5281/zenodo.14344328