Research Article
BibTex RIS Cite

Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes

Year 2022, Volume: 2 Issue: 1, 1 - 17, 30.06.2022

Abstract

In this work, the preparation of reduced graphene oxide (rGO) supported Pt nanoparticles by using the supercritical carbon dioxide (scCO2) deposition technique is investigated. For this purpose, firstly, graphite oxide synthesis was made similar to the literature reports and then two different reducing agents (DMF and hydrazine hydrate) were used to prepare rGO support materials, called as rGO1 and rGO2, respectively. Finally, Pt nanoparticles (NPs) were formed on the rGO support materials. The effect of the reducing agent type and also of the catalyst preparation technique on the fuel cell performance were examined with spectroscopic, microscopic, and electrochemical techniques. From the results obtained, it appears that the properties of rGO vary significantly depending on the reducing agent used. Moreover, the electrode containing Pt/rGO1 has exhibited better cell performance compared to the Pt/rGO2.

References

  • [1] Acres G. J. K. Recent advances in fuel cell technology and its applications. Journal of Power Sources. 2001;100:60-66.
  • [2] Ozdemir OK. A novel method to produce few layers of graphene as support materials for platinum catalyst. Chemical Papers. 2018;73:387-95.
  • [3] Kou R, Shao Y, Wang D, Engelhard MH, Kwak JH, Wang J, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications. 2009;11:954-7.
  • [4] Daş E, Yurtcan AB. Effect of carbon ratio in the polypyrrole/carbon composite catalyst support on PEM fuel cell performance. International Journal of Hydrogen Energy. 2016;41:13171-9.
  • [5] Zhang M, Xie J, Sun Q, Yan Z, Chen M, Jing J. Enhanced electrocatalytic activity of high Pt-loadings on surface functionalized graphene nanosheets for methanol oxidation. International Journal of Hydrogen Energy. 2013;38:16402-9.
  • [6] Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources. 2010;195:4600-5.
  • [7] Hellman H, Vandenhoed R. Characterising fuel cell technology: Challenges of the commercialisation process. International Journal of Hydrogen Energy. 2007;32:305-15.
  • [8] Bayrakçeken A, Smirnova A, Kitkamthorn U, Aindow M, Türker L, Eroğlu İ, et al. Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. Journal of Power Sources. 2008;179:532-40.
  • [9] Daş E, Bayrakçeken Yurtcan A. PEDOT/C Composites used as a Proton Exchange Membrane Fuel Cell Catalyst Support: Role of Carbon Amount. Energy Technology. 2017;5:1552-60.
  • [10] Dicks AL. The role of carbon in fuel cells. Journal of Power Sources. 2006;156:128-41.
  • [11] Oh H-S, Lee J-H, Kim H. Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy. 2012;37:10844-9.
  • [12] Wang J, Yin G, Shao Y, Zhang S, Wang Z, Gao Y. Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources. 2007;171:331-9.
  • [13] Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Journal of Power Sources. 2007;172:145-54.
  • [14] Liu B, Creager S. Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications. Journal of Power Sources. 2010;195:1812-20.
  • [15] Cheng K, He D, Peng T, Lv H, Pan M, Mu S. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells. Electrochimica Acta. 2014;132:356-63.
  • [16] Arbizzani C, Righi S, Soavi F, Mastragostino M. Graphene and carbon nanotube structures supported on mesoporous xerogel carbon as catalysts for oxygen reduction reaction in proton-exchange-membrane fuel cells. International Journal of Hydrogen Energy. 2011;36:5038-46.
  • [17] Sebastián D, Calderón JC, González-Expósito JA, Pastor E, Martínez-Huerta MV, Suelves I, et al. Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. International Journal of Hydrogen Energy. 2010;35:9934-42.
  • [18] Trogadas P, Fuller TF, Strasser P. Carbon as catalyst and support for electrochemical energy conversion. Carbon. 2014;75:5-42.
  • [19] Sharma S, Pollet BG. Support materials for PEMFC and DMFC electrocatalysts—A review. Journal of Power Sources. 2012;208:96-119.
  • [20] Shao Y, Zhang S, Kou R, Wang X, Wang C, Dai S, et al. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. Journal of Power Sources. 2010;195:1805-11.
  • [21] Julkapli NM, Bagheri S. Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy. 2015;40:948-79.
  • [22] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48:2127-50.
  • [23] Marinkas A, Arena F, Mitzel J, Prinz GM, Heinzel A, Peinecke V, et al. Graphene as catalyst support: The influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells. Carbon. 2013;58:139-50.
  • [24] Antolini E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental. 2012;123-124:52-68.
  • [25] Seger B, Kamat P. V. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells. The Journal of Physical Chemistry C Letters.2009;113:7990-7995.
  • [26] Park S, Shao Y, Wan H, Rieke PC, Viswanathan VV, Towne SA, et al. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochemistry Communications. 2011;13:258-61.
  • [27] Brownson DAC, Kampouris DK, Banks CE. An overview of graphene in energy production and storage applications. Journal of Power Sources. 2011;196:4873-85.
  • [28] Geng Y, Wang SJ, Kim JK. Preparation of graphite nanoplatelets and graphene sheets. J Colloid Interface Sci. 2009;336:592-8.
  • [29] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile Synthesis and Characterization of Graphene Nanosheets. J. Phys. Chem. C. 2008;112:8192-8195.
  • [30] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558-65.
  • [31] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228-40.
  • [32] Xin Y, Liu J-g, Zhou Y, Liu W, Gao J, Xie Y, et al. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. Journal of Power Sources. 2011;196:1012-8.
  • [33] Daş E, Alkan Gürsel S, Işıkel Şanlı L, Bayrakçeken Yurtcan A. Thermodynamically controlled Pt deposition over graphene nanoplatelets: Effect of Pt loading on PEM fuel cell performance. International Journal of Hydrogen Energy. 2017;42:19246-56.
  • [34] Quesnel E, Roux F, Emieux F, Faucherand P, Kymakis E, Volonakis G, et al. Graphene-based technologies for energy applications, challenges and perspectives. 2D Materials. 2015;2.
  • [35] Zhang Y, Erkey C. Preparation of supported metallic nanoparticles using supercritical fluids: A review. The Journal of Supercritical Fluids. 2006;38:252-67.
  • [36] Bozbağ SE, Erkey C. Supercritical deposition: Current status and perspectives for the preparation of supported metal nanostructures. The Journal of Supercritical Fluids. 2015;96:298-312.
  • [37] Daş E, Kaplan BY, Gürsel SA, Yurtcan AB. Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells. Renewable Energy. 2019;139:1099-110.
  • [38] Bozbağ SE, Gümüşoğlu T, Yılmaztürk S, Ayala CJ, Aindow M, Deligöz H, et al. Electrochemical performance of fuel cell catalysts prepared by supercritical deposition: Effect of different precursor conversion routes. The Journal of Supercritical Fluids. 2015;97:154-64.
  • [39] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva and A. D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations, Chem. Mater. 1999 (11) 771-778.
  • [40] Bayrakçeken Yurtcan A, Daş E. Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy. 2018;43:18691-701.
  • [41] Daş E, Alkan Gürsel S, Işikel Şanli L, Bayrakçeken Yurtcan A. Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts. International Journal of Hydrogen Energy. 2016;41:9755-61.
  • [42] Bayrakçeken A, Cangül B, Zhang LC, Aindow M, Erkey C. PtPd/BP2000 electrocatalysts prepared by sequential supercritical carbon dioxide deposition. International Journal of Hydrogen Energy. 2010;35:11669-80.
  • [43] Brunauer S, Emmett P. H, Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society. 1938;60:309-319.
  • [44] Saquing CD, Cheng TT, Aindow M, Erkey C. Preparation of platinum/carbon aerogel nanocomposites using a supercritical deposition method. J. Phys. Chem. B. 2004;108:7716-22.
  • [45] Lebedeva NP, Janssen GJM. On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochemica Acta 2005;51:29-40.
  • [46] Mikhailov S. Physics and Applications of Graphene Experiments. ISBN: 978-953-307-217-3. Chapter 17, page 423.
  • [47] Yu S, Liu Q, Yang W, Han K, Wang Z, Zhu H. Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells. Electrochim. Acta. 2013;94:245-251.
  • [48] Hasa B, Martino E, Vakros J, Trakakis G, Galiotis C, Katsaounis A. Effect of Carbon Support on the Electrocatalytic Properties of Pt−Ru Catalysts. ChemElectroChem. 2019;6:4970-9.
  • [49] Memioğlu F, Bayrakçeken A, Öznülüer T, Ak M. Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications. International Journal of Hydrogen Energy. 2012;37:16673-9.
  • [50] Schonvogel D, Hülstede J, Wagner P, Kruusenberg I, Tammeveski K, Dyck A, et al. Stability of Pt Nanoparticles on Alternative Carbon Supports for Oxygen Reduction Reaction. Journal of The Electrochemical Society. 2017;164:F995-F1004.
  • [51] Tarasevich M.R, Bogdanovskaya V. A, Zagudaeva N. M. Redox Reactions of Quinones on Carbon Materials. J. Electroanal. Chem. 1987;223:161-169.
  • [52] Şanlı LI, Bayram V, Yarar B, Ghobadi S, Gürsel SA. Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation–reduction methods. International Journal of Hydrogen Energy. 2016;41:3414-27.

PEM Yakıt Pili Elektrotları için Süperkritik Karbondioksit Depozisyon Tekniği ile İndirgenmiş Grafen Oksit (rGO) Destekli Pt Nanoparçacıklarının Sentezi

Year 2022, Volume: 2 Issue: 1, 1 - 17, 30.06.2022

Abstract

Bu çalışmada, süperkritik karbondioksit depozisyon tekniği (scCO2) kullanılarak indirgenmiş grafen oksit destekli (rGO) Pt nanoparçacıklarının sentezi araştırılmaktadır. Bu amaçla, öncelikle, literatüre benzer olarak grafit oksit sentezi gerçekleştirildi ve daha sonra iki farklı indirgeyici ajan (DMF ve hidrazin hidrat) ile sırasıyla rGO1 ve rGO2 olarak isimlendirilen rGO destek malzemeleri hazırlandı. Son olarakta, Pt nanoparçacıkları (NPs) rGO destek malzemeleri üzerine oluşturuldu. Indirgeyici ajan türünün ve katalizör hazırlama tekniğinin yakıt pili performansı üzerindeki etkisi spektroskopik, mikroskopik ve elektrokimyasal tekniklerle incelendi. Elde edilen sonuçlardan, kullanılan indirgeyici ajana bağlı olarak rGO malzemesinin özelliklerinin önemli ölçüde değiştiği görülmektedir. Ayrıca, Pt/rGO1 içeren elektrot, Pt/rGO2’ye kıyasla daha iyi pil performansı sergilemiştir.

Supporting Institution

Atatürk Üniversitesi, BAP birimi

References

  • [1] Acres G. J. K. Recent advances in fuel cell technology and its applications. Journal of Power Sources. 2001;100:60-66.
  • [2] Ozdemir OK. A novel method to produce few layers of graphene as support materials for platinum catalyst. Chemical Papers. 2018;73:387-95.
  • [3] Kou R, Shao Y, Wang D, Engelhard MH, Kwak JH, Wang J, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications. 2009;11:954-7.
  • [4] Daş E, Yurtcan AB. Effect of carbon ratio in the polypyrrole/carbon composite catalyst support on PEM fuel cell performance. International Journal of Hydrogen Energy. 2016;41:13171-9.
  • [5] Zhang M, Xie J, Sun Q, Yan Z, Chen M, Jing J. Enhanced electrocatalytic activity of high Pt-loadings on surface functionalized graphene nanosheets for methanol oxidation. International Journal of Hydrogen Energy. 2013;38:16402-9.
  • [6] Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources. 2010;195:4600-5.
  • [7] Hellman H, Vandenhoed R. Characterising fuel cell technology: Challenges of the commercialisation process. International Journal of Hydrogen Energy. 2007;32:305-15.
  • [8] Bayrakçeken A, Smirnova A, Kitkamthorn U, Aindow M, Türker L, Eroğlu İ, et al. Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. Journal of Power Sources. 2008;179:532-40.
  • [9] Daş E, Bayrakçeken Yurtcan A. PEDOT/C Composites used as a Proton Exchange Membrane Fuel Cell Catalyst Support: Role of Carbon Amount. Energy Technology. 2017;5:1552-60.
  • [10] Dicks AL. The role of carbon in fuel cells. Journal of Power Sources. 2006;156:128-41.
  • [11] Oh H-S, Lee J-H, Kim H. Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy. 2012;37:10844-9.
  • [12] Wang J, Yin G, Shao Y, Zhang S, Wang Z, Gao Y. Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources. 2007;171:331-9.
  • [13] Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Journal of Power Sources. 2007;172:145-54.
  • [14] Liu B, Creager S. Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications. Journal of Power Sources. 2010;195:1812-20.
  • [15] Cheng K, He D, Peng T, Lv H, Pan M, Mu S. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells. Electrochimica Acta. 2014;132:356-63.
  • [16] Arbizzani C, Righi S, Soavi F, Mastragostino M. Graphene and carbon nanotube structures supported on mesoporous xerogel carbon as catalysts for oxygen reduction reaction in proton-exchange-membrane fuel cells. International Journal of Hydrogen Energy. 2011;36:5038-46.
  • [17] Sebastián D, Calderón JC, González-Expósito JA, Pastor E, Martínez-Huerta MV, Suelves I, et al. Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. International Journal of Hydrogen Energy. 2010;35:9934-42.
  • [18] Trogadas P, Fuller TF, Strasser P. Carbon as catalyst and support for electrochemical energy conversion. Carbon. 2014;75:5-42.
  • [19] Sharma S, Pollet BG. Support materials for PEMFC and DMFC electrocatalysts—A review. Journal of Power Sources. 2012;208:96-119.
  • [20] Shao Y, Zhang S, Kou R, Wang X, Wang C, Dai S, et al. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. Journal of Power Sources. 2010;195:1805-11.
  • [21] Julkapli NM, Bagheri S. Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy. 2015;40:948-79.
  • [22] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48:2127-50.
  • [23] Marinkas A, Arena F, Mitzel J, Prinz GM, Heinzel A, Peinecke V, et al. Graphene as catalyst support: The influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells. Carbon. 2013;58:139-50.
  • [24] Antolini E. Graphene as a new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental. 2012;123-124:52-68.
  • [25] Seger B, Kamat P. V. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells. The Journal of Physical Chemistry C Letters.2009;113:7990-7995.
  • [26] Park S, Shao Y, Wan H, Rieke PC, Viswanathan VV, Towne SA, et al. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochemistry Communications. 2011;13:258-61.
  • [27] Brownson DAC, Kampouris DK, Banks CE. An overview of graphene in energy production and storage applications. Journal of Power Sources. 2011;196:4873-85.
  • [28] Geng Y, Wang SJ, Kim JK. Preparation of graphite nanoplatelets and graphene sheets. J Colloid Interface Sci. 2009;336:592-8.
  • [29] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J. Facile Synthesis and Characterization of Graphene Nanosheets. J. Phys. Chem. C. 2008;112:8192-8195.
  • [30] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558-65.
  • [31] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228-40.
  • [32] Xin Y, Liu J-g, Zhou Y, Liu W, Gao J, Xie Y, et al. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. Journal of Power Sources. 2011;196:1012-8.
  • [33] Daş E, Alkan Gürsel S, Işıkel Şanlı L, Bayrakçeken Yurtcan A. Thermodynamically controlled Pt deposition over graphene nanoplatelets: Effect of Pt loading on PEM fuel cell performance. International Journal of Hydrogen Energy. 2017;42:19246-56.
  • [34] Quesnel E, Roux F, Emieux F, Faucherand P, Kymakis E, Volonakis G, et al. Graphene-based technologies for energy applications, challenges and perspectives. 2D Materials. 2015;2.
  • [35] Zhang Y, Erkey C. Preparation of supported metallic nanoparticles using supercritical fluids: A review. The Journal of Supercritical Fluids. 2006;38:252-67.
  • [36] Bozbağ SE, Erkey C. Supercritical deposition: Current status and perspectives for the preparation of supported metal nanostructures. The Journal of Supercritical Fluids. 2015;96:298-312.
  • [37] Daş E, Kaplan BY, Gürsel SA, Yurtcan AB. Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells. Renewable Energy. 2019;139:1099-110.
  • [38] Bozbağ SE, Gümüşoğlu T, Yılmaztürk S, Ayala CJ, Aindow M, Deligöz H, et al. Electrochemical performance of fuel cell catalysts prepared by supercritical deposition: Effect of different precursor conversion routes. The Journal of Supercritical Fluids. 2015;97:154-64.
  • [39] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva and A. D. Gorchinskiy, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations, Chem. Mater. 1999 (11) 771-778.
  • [40] Bayrakçeken Yurtcan A, Daş E. Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy. 2018;43:18691-701.
  • [41] Daş E, Alkan Gürsel S, Işikel Şanli L, Bayrakçeken Yurtcan A. Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts. International Journal of Hydrogen Energy. 2016;41:9755-61.
  • [42] Bayrakçeken A, Cangül B, Zhang LC, Aindow M, Erkey C. PtPd/BP2000 electrocatalysts prepared by sequential supercritical carbon dioxide deposition. International Journal of Hydrogen Energy. 2010;35:11669-80.
  • [43] Brunauer S, Emmett P. H, Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society. 1938;60:309-319.
  • [44] Saquing CD, Cheng TT, Aindow M, Erkey C. Preparation of platinum/carbon aerogel nanocomposites using a supercritical deposition method. J. Phys. Chem. B. 2004;108:7716-22.
  • [45] Lebedeva NP, Janssen GJM. On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochemica Acta 2005;51:29-40.
  • [46] Mikhailov S. Physics and Applications of Graphene Experiments. ISBN: 978-953-307-217-3. Chapter 17, page 423.
  • [47] Yu S, Liu Q, Yang W, Han K, Wang Z, Zhu H. Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells. Electrochim. Acta. 2013;94:245-251.
  • [48] Hasa B, Martino E, Vakros J, Trakakis G, Galiotis C, Katsaounis A. Effect of Carbon Support on the Electrocatalytic Properties of Pt−Ru Catalysts. ChemElectroChem. 2019;6:4970-9.
  • [49] Memioğlu F, Bayrakçeken A, Öznülüer T, Ak M. Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications. International Journal of Hydrogen Energy. 2012;37:16673-9.
  • [50] Schonvogel D, Hülstede J, Wagner P, Kruusenberg I, Tammeveski K, Dyck A, et al. Stability of Pt Nanoparticles on Alternative Carbon Supports for Oxygen Reduction Reaction. Journal of The Electrochemical Society. 2017;164:F995-F1004.
  • [51] Tarasevich M.R, Bogdanovskaya V. A, Zagudaeva N. M. Redox Reactions of Quinones on Carbon Materials. J. Electroanal. Chem. 1987;223:161-169.
  • [52] Şanlı LI, Bayram V, Yarar B, Ghobadi S, Gürsel SA. Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation–reduction methods. International Journal of Hydrogen Energy. 2016;41:3414-27.

Details

Primary Language English
Subjects Nanotechnology
Journal Section Research Articles
Authors

Elif DAŞ

Ayşe BAYRAKÇEKEN YURTCAN

Project Number 2014/79
Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 2 Issue: 1

Cite

Vancouver DAŞ E, BAYRAKÇEKEN YURTCAN A. Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes. JAPA. 2022;2(1):1-17.