Research Article
BibTex RIS Cite

An Experimental Study on Rayleigh Scattering

Year 2024, Volume: 3 Issue: 1, 1 - 6, 27.06.2024
https://doi.org/10.5281/zenodo.12174677

Abstract

The Rayleigh scattering cross-sections were determined in the region of 22≤ Z ≤82 at 1260 using an energy dispersive X-ray fluorescence spectrometer at 59.5 keV energy and a Si(Li) detector. This paper presents and discusses the results of this study. The predictions of several form factor theories were compared with experimental Rayleigh scattering differential cross-sections

References

  • Böke, A. (2014). Linear attenuation coefficients of tissues from 1keV to 150keV. Radiation Physics and Chemistry, 102, 49–59. https://doi.org/10.1016/j.radphyschem.2014.04.006
  • Del Lama, L., Soares, L., Antoniassi, M., & Poletti, M. (2015). Effective atomic numbers for materials of medical interest at low photon energy using the Rayleigh to Compton scattering ratio. Nuclear Instruments and Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment/Nuclear Instruments & Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment, 784, 597–601. https://doi.org/10.1016/j.nima.2014.12.046
  • Hubbell, J. H., & O/Verbo, I. (1979). Relativistic atomic form factors and photon coherent scattering cross sections. Journal of Physical and Chemical Reference Data, 8(1), 69–106. https://doi.org/10.1063/1.555593
  • Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T., & Howerton, R. J. (1975). Atomic form factors, incoherent scattering functions, and photon scattering cross sections. Journal of Physical and Chemical Reference Data, 4(3), 471–538. https://doi.org/10.1063/1.555523
  • İçelli, O., & Erzeneoğlu, S. (2002). Experimental study on ratios of coherent scattering to Compton scattering for elements with atomic numbers 26⩽Z⩽82 in 59.5 keV for 55° and 115°. Spectrochimica Acta. Part B, Atomic Spectroscopy, 57(8), 1317–1323. https://doi.org/10.1016/s0584-8547(02)00050-2
  • Kane, P. P., Mahajani, J., Basavaraju, G., & Priyadarsini, A. K. (1983). Scattering of 1.1732- and 1.3325-MeV gamma rays through small angles by carbon, aluminum, copper, tin, and lead. Physical Review. A, General Physics, 28(3), 1509–1516. https://doi.org/10.1103/physreva.28.1509
  • Kissel, L., Pratt, R. H., & Roy, S. C. (1980). Rayleigh scattering by neutral atoms, 100 eV to 10 MeV. Physical Review. A, General Physics, 22(5), 1970–2004. https://doi.org/10.1103/physreva.22.1970
  • Nayak, N. G., Siddappa, K., Balakrishna, K. M., & Lingappa, N. (1992). Coherent scattering of 59.5-keV γ rays by some medium and heavy elements. Physical Review. A, Atomic, Molecular, and Optical Physics/Physical Review, a, Atomic, Molecular, and Optical Physics, 45(7), 4490–4493. https://doi.org/10.1103/physreva.45.4490
  • Schaupp, D., Schumacher, M., Smend, F., Rullhusen, P., & Hubbell, J. H. (1983). Small-Angle Rayleigh Scattering of Photons at High Energies: Tabulations of Relativistic HFS Modified Atomic Form Factors. Journal of Physical and Chemical Reference Data, 12(3), 467–512. https://doi.org/10.1063/1.555690
  • Singh, M., Sharma, A., Singh, B., & Sandhu, B. (2013). An experimental study on cross-section ratio of coherent to incoherent scattering for 145 keV incident gamma photons. Radiation Measurements, 59, 30–36. https://doi.org/10.1016/j.radmeas.2013.09.003
  • Tartari, A., Taibi, A., Bonifazzi, C., Gambaccini, M., & De Felici, M. (2005). Updating of x‐ray coherent scattering cross‐sections and their effects in microbeam and material analysis applications. X-ray Spectrometry, 34(5), 421–425. https://doi.org/10.1002/xrs.847
  • Thanh, T. T., Minh, L. H., Cuong, N. Q. B., Chuong, H. D., Thong, N. D., Nguyen, V. H., Ho, P. L., Tai, C. T., & Van Tao, C. (2020). Study of different methods to estimate the Rayleigh to Compton scattering ratio and the effective atomic number (10 < Z < 30) using Si(Li) detector. Nuclear Instruments and Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment/Nuclear Instruments & Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment, 969, 163995. https://doi.org/10.1016/j.nima.2020.163995
  • Thulasi, P. V., Joseph, A., Somashekarappa, H. M., & Kamat, V. A. (2021). Coherent Scattering Cross Sections of Some Rare Earth Compounds at Small Angles Below 10° for 59.54 KeV Gamma Rays. Social Science Research Network. https://doi.org/10.2139/ssrn.3973501
  • Upmanyu, A., Singh, G., Duggal, H., Kainth, H., Bhalla, A., & Kumar, S. (2017). Measurement of large angle Rayleigh scattering cross sections for 39.5, 40.1 and 45.4 keV photons in elements with 26 ≤ Z ≤ 83. Applied Radiation and Isotopes, 128, 125–131. https://doi.org/10.1016/j.apradiso.2017.07.012
  • Vinaykumar, L., & Umesh, T. (2016). Small angle scattering of 59.54 keV photons by elemental samples in the atomic number region 13 ≤ Z ≤ 82. Journal of Radiation Research and Applied Sciences, 9(1), 35–40. https://doi.org/10.1016/j.jrras.2015.08.003
  • Volotka, A. V., Yerokhin, V. A., Surzhykov, A., Stöhlker, T., & Fritzsche, S. (2016). Many-electron effects on x-ray Rayleigh scattering by highly charged He-like ions. Physical Review. A/Physical Review, A, 93(2). https://doi.org/10.1103/physreva.93.023418

Rayleigh Şaçılma Üzerine Deneysel Bir Çalışma

Year 2024, Volume: 3 Issue: 1, 1 - 6, 27.06.2024
https://doi.org/10.5281/zenodo.12174677

Abstract

Bu çalışmada, Rayleigh saçılma diferansiyel tesir kesitleri enerji ayrımlı X-ışını flöresans spektrometreyle 22≤ Z ≤82 bölgesinde 1260 lik saçılma açısında ölçüldü. Deneyde 59.5 keV enerjili fotonlar ve bir Si(Li) dedektörü kullanıldı. Sonuçlar bu makalede sunuldu ve tartışıldı. Deneysel Rayleigh saçılma diferansiyel tesir kesitleri farklı form faktör teorilerinin sonuçlarıyla karşılaştırıldı.

References

  • Böke, A. (2014). Linear attenuation coefficients of tissues from 1keV to 150keV. Radiation Physics and Chemistry, 102, 49–59. https://doi.org/10.1016/j.radphyschem.2014.04.006
  • Del Lama, L., Soares, L., Antoniassi, M., & Poletti, M. (2015). Effective atomic numbers for materials of medical interest at low photon energy using the Rayleigh to Compton scattering ratio. Nuclear Instruments and Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment/Nuclear Instruments & Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment, 784, 597–601. https://doi.org/10.1016/j.nima.2014.12.046
  • Hubbell, J. H., & O/Verbo, I. (1979). Relativistic atomic form factors and photon coherent scattering cross sections. Journal of Physical and Chemical Reference Data, 8(1), 69–106. https://doi.org/10.1063/1.555593
  • Hubbell, J. H., Veigele, W. J., Briggs, E. A., Brown, R. T., Cromer, D. T., & Howerton, R. J. (1975). Atomic form factors, incoherent scattering functions, and photon scattering cross sections. Journal of Physical and Chemical Reference Data, 4(3), 471–538. https://doi.org/10.1063/1.555523
  • İçelli, O., & Erzeneoğlu, S. (2002). Experimental study on ratios of coherent scattering to Compton scattering for elements with atomic numbers 26⩽Z⩽82 in 59.5 keV for 55° and 115°. Spectrochimica Acta. Part B, Atomic Spectroscopy, 57(8), 1317–1323. https://doi.org/10.1016/s0584-8547(02)00050-2
  • Kane, P. P., Mahajani, J., Basavaraju, G., & Priyadarsini, A. K. (1983). Scattering of 1.1732- and 1.3325-MeV gamma rays through small angles by carbon, aluminum, copper, tin, and lead. Physical Review. A, General Physics, 28(3), 1509–1516. https://doi.org/10.1103/physreva.28.1509
  • Kissel, L., Pratt, R. H., & Roy, S. C. (1980). Rayleigh scattering by neutral atoms, 100 eV to 10 MeV. Physical Review. A, General Physics, 22(5), 1970–2004. https://doi.org/10.1103/physreva.22.1970
  • Nayak, N. G., Siddappa, K., Balakrishna, K. M., & Lingappa, N. (1992). Coherent scattering of 59.5-keV γ rays by some medium and heavy elements. Physical Review. A, Atomic, Molecular, and Optical Physics/Physical Review, a, Atomic, Molecular, and Optical Physics, 45(7), 4490–4493. https://doi.org/10.1103/physreva.45.4490
  • Schaupp, D., Schumacher, M., Smend, F., Rullhusen, P., & Hubbell, J. H. (1983). Small-Angle Rayleigh Scattering of Photons at High Energies: Tabulations of Relativistic HFS Modified Atomic Form Factors. Journal of Physical and Chemical Reference Data, 12(3), 467–512. https://doi.org/10.1063/1.555690
  • Singh, M., Sharma, A., Singh, B., & Sandhu, B. (2013). An experimental study on cross-section ratio of coherent to incoherent scattering for 145 keV incident gamma photons. Radiation Measurements, 59, 30–36. https://doi.org/10.1016/j.radmeas.2013.09.003
  • Tartari, A., Taibi, A., Bonifazzi, C., Gambaccini, M., & De Felici, M. (2005). Updating of x‐ray coherent scattering cross‐sections and their effects in microbeam and material analysis applications. X-ray Spectrometry, 34(5), 421–425. https://doi.org/10.1002/xrs.847
  • Thanh, T. T., Minh, L. H., Cuong, N. Q. B., Chuong, H. D., Thong, N. D., Nguyen, V. H., Ho, P. L., Tai, C. T., & Van Tao, C. (2020). Study of different methods to estimate the Rayleigh to Compton scattering ratio and the effective atomic number (10 < Z < 30) using Si(Li) detector. Nuclear Instruments and Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment/Nuclear Instruments & Methods in Physics Research. Section a, Accelerators, Spectrometers, Detectors and Associated Equipment, 969, 163995. https://doi.org/10.1016/j.nima.2020.163995
  • Thulasi, P. V., Joseph, A., Somashekarappa, H. M., & Kamat, V. A. (2021). Coherent Scattering Cross Sections of Some Rare Earth Compounds at Small Angles Below 10° for 59.54 KeV Gamma Rays. Social Science Research Network. https://doi.org/10.2139/ssrn.3973501
  • Upmanyu, A., Singh, G., Duggal, H., Kainth, H., Bhalla, A., & Kumar, S. (2017). Measurement of large angle Rayleigh scattering cross sections for 39.5, 40.1 and 45.4 keV photons in elements with 26 ≤ Z ≤ 83. Applied Radiation and Isotopes, 128, 125–131. https://doi.org/10.1016/j.apradiso.2017.07.012
  • Vinaykumar, L., & Umesh, T. (2016). Small angle scattering of 59.54 keV photons by elemental samples in the atomic number region 13 ≤ Z ≤ 82. Journal of Radiation Research and Applied Sciences, 9(1), 35–40. https://doi.org/10.1016/j.jrras.2015.08.003
  • Volotka, A. V., Yerokhin, V. A., Surzhykov, A., Stöhlker, T., & Fritzsche, S. (2016). Many-electron effects on x-ray Rayleigh scattering by highly charged He-like ions. Physical Review. A/Physical Review, A, 93(2). https://doi.org/10.1103/physreva.93.023418
There are 16 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Research Articles
Authors

Salih Zeki Erzeneoğlu 0000-0002-0890-6099

Publication Date June 27, 2024
Submission Date May 2, 2024
Acceptance Date June 4, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Erzeneoğlu, S. Z. (2024). An Experimental Study on Rayleigh Scattering. Journal of Anatolian Physics and Astronomy, 3(1), 1-6. https://doi.org/10.5281/zenodo.12174677