Research Article
BibTex RIS Cite

Investigation of Photo-Electrial Properties in (Fe2O3-G)/n-Si Device

Year 2024, Volume: 3 Issue: 2, 62 - 74, 12.12.2024
https://doi.org/10.5281/zenodo.14344182

Abstract

This study focuses on the synthesis of iron oxide-graphene (-Fe2O3-G) composite materials and the evaluation of their performance in devices constructed on n-type silicon (n-Si) semiconductors, under both dark and illuminated conditions. Key electrical parameters such as the ideality factor (n = 2.59), barrier height (Φb = 0.74 eV), and series resistance (Rs = 70 kΩ) were determined using Thermionic Emission (TE) and Norde methods from I-V measurements taken in the dark. The device's photoelectrical properties were further examined under illumination, revealing that the Fe2O3-G/n-Si device exhibits self-powered behavior, operating without an external power source. The device achieved a maximum ON/OFF ratio of 32496 and a spesific detectivity (D*) of 26.6 Jones at 0V, along with a maximum responsivity (R) of 98 mAW-1 at -2V. These results highlight the device's potential for efficient photodetection, particularly in self-powered applications.

References

  • Abdel-Salam, A. I., Gomaa, I., Khalid, A., & Soliman, T. S. (2022). Investigation of raman spectrum, structural, morphological, and optical features of Fe2O3 and Fe2O3/reduced graphene oxide hybrid nanocomposites. Physica Scripta, 97(12), 125807. https://doi.org/10.1088/1402-4896/ac9c38
  • Alam, N., Ullah, A., Khan, Y., Oh, W. C., & Ullah, K. (2018). Fabrication and enhancement in photoconductive response of α -Fe2O3/graphene nanocomposites as anode material. Journal of Materials Science Materials in Electronics, 29(20), 17786–17794. https://doi.org/10.1007/s10854-018-9886-2
  • Alshareefi, S. J. A., & Al-Nafiey, A. (2024). Graphene and ZnO NPs-enhanced photodetectors based on SiO NWs: Synthesis, characterization, and applications. Results in Optics, 16, 100690. https://doi.org/10.1016/j.rio.2024.100690
  • Aydoğan, A., İncekara, M., & Türüt, A. (2010). Determination of contact parameters of Au/Carmine/n-Si Schottky device. Thin Solid Films, 518(23), 7156–7160. https://doi.org/10.1016/j.tsf.2010.06.019
  • Bozkurt, G. (2020). Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microemulsion Method. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 890–897. https://doi.org/10.18185/erzifbed.742160
  • Can, M. M., Coşkun, M., & Fırat, T. (2012). A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542, 241–247. https://doi.org/10.1016/j.jallcom.2012.07.091
  • Daş, E. (2022). Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science, 26(5), 1000–1009. https://doi.org/10.16984/saufenbilder.1129742
  • Daş, E., Incekara, U., & Aydoğan, A. (2021). A comparative study on electrical characteristics of Ni/n-Si and Ni/p-Si Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature. Optical Materials, 119, 111380. https://doi.org/10.1016/j.optmat.2021.111380
  • Daş, E., & Yurtcan, A. B. (2022). Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes. Journal of Anatolian Physics and Astronomy, 1(2), 1–17.
  • Erdoğan, M., Orhan, Z., & Daş, E. (2022). Synthesis of electron-rich thiophene triphenylamine based organic material for photodiode applications. Optical Materials, 128, 112446. https://doi.org/10.1016/j.optmat.2022.112446
  • Gao, W., Li, Y., Zhao, J., Zhang, Z., Tang, W., Wang, J., Wu, Z., & Li, Z. (2022). Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chemical Research in Chinese Universities, 38(4), 1097–1104. https://doi.org/10.1007/s40242-022-1442-1
  • Ghobadi, A., Ghobadi, T. G. U., Karadas, F., & Ozbay, E. (2019). Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 7(14). https://doi.org/10.1002/adom.201900028
  • Güllü, Ö., Aydoğan, Ş., & Türüt, A. (2008). Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23(7), 075005. https://doi.org/10.1088/0268-1242/23/7/075005
  • Gupta, R., Ghosh, K., & Kahol, P. (2009). Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), 933–936. https://doi.org/10.1016/j.cap.2008.09.007
  • Han, L. H., Liu, H., & Wei, Y. (2011). In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technology, 207(1–3), 42–46. https://doi.org/10.1016/j.powtec.2010.10.008
  • Idisi, D. O., Ahia, C. C., Meyer, E. L., Bodunrin, J. O., & Benecha, E. M. (2023). Graphene oxide:Fe2O3 nanocomposites for photodetector applications: experimental and ab initio density functional theory study. RSC Advances, 13(9), 6038–6050. https://doi.org/10.1039/d3ra00174a
  • Kim, S., Kim, M., & Kim, H. (2024). Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy, 109725. https://doi.org/10.1016/j.nanoen.2024.109725
  • Li, Y., & Park, C. W. (1998). Particle Size Distribution in the Synthesis of Nanoparticles Using Microemulsions. Langmuir, 15(4), 952–956. https://doi.org/10.1021/la980550z
  • Lu, W., Guo, X., Yang, B., Wang, S., Liu, Y., Yao, H., Liu, C., & Pang, H. (2019). Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 6(19), 4922–4948. https://doi.org/10.1002/celc.201901006
  • Middya, S., Layek, A., Dey, A., Datta, J., Das, M., Banerjee, C., & Ray, P. P. (2014). Role of zinc oxide nanomorphology on Schottky diode properties. Chemical Physics Letters, 610–611, 39–44. https://doi.org/10.1016/j.cplett.2014.07.003
  • Muhajir, M., Puspitasari, P., & Razak, J. A. (2019). Synthesis and Applications of Hematite α-Fe2O3 : a Review. Journal of Mechanical Engineering Science and Technology (JMEST), 3(2), 51–58. https://doi.org/10.17977/um016v3i22019p051
  • Norde, H. (1979). A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052–5053. https://doi.org/10.1063/1.325607
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
  • Ramakrishnan, K., Ajitha, B., & Reddy, Y. a. K. (2023). Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions. Sensors and Actuators. A, Physical, 349, 114051. https://doi.org/10.1016/j.sna.2022.114051
  • Saleem, S., Ashiq, M. N., Manzoor, S., Ali, U., Liaqat, R., Algahtani, A., Mujtaba, S., Tirth, V., Alsuhaibani, A. M., Refat, M. S., Ali, A., Aslam, M., & Zaman, A. (2023). Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application. Journal of Materials Research and Technology, 25, 6150–6166. https://doi.org/10.1016/j.jmrt.2023.07.065
  • Sarkar, K., & Kumar, P. (2024). Nanostructured carbon heterojunctions for broadband photodetection: Development roadmap, emerging technologies, and future perspectives. Carbon, 219, 118842. https://doi.org/10.1016/j.carbon.2024.118842
  • Sun, M., Liu, H., Liu, Y., Qu, J., & Li, J. (2015). Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 7(4), 1250–1269. https://doi.org/10.1039/c4nr05838k
  • Talebi, S., & Eshghi, H. (2023). Achievement of high infrared photoresponse in n-MoO3/p-Si heterostructure photodiode prepared via the thermal oxidation method, the influence of oxygen flow rate. Materials Chemistry and Physics, 303, 127792. https://doi.org/10.1016/j.matchemphys.2023.127792
  • Wang, S., Liu, H., Cao, Z., Wang, X., Zhang, L., Ding, J., Xue, Y., Han, T., Li, F., Shan, L., & Long, M. (2023). Highly Sensitive Long‐Wave Infrared Photodetector Based on Two‐Dimensional Hematite α‐Fe2O3. Advanced Optical Materials, 11(19). https://doi.org/10.1002/adom.202300382
  • Xiong, G., Zhang, G., & Feng, W. (2024). High performance photodetectors by integrating CsPbBr3 perovskite directly on the germanium wafer. Materials Research Bulletin, 179, 112959. https://doi.org/10.1016/j.materresbull.2024.112959
  • Yildirim, G. B., & Daş, E. (2023). The synthesis of MgO and MgO-graphene nanocomposite materials and their diode and photodiode applications. Physica Scripta, 98(8), 085911. https://doi.org/10.1088/1402-4896/ace249
  • Yurtcan, A. B., & Daş, E. (2018). Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy, 43(40), 18691–18701. https://doi.org/10.1016/j.ijhydene.2018.06.186

(Fe2O3-G)/n-Si Cihazında Foto-Elektriksel Özelliklerin Araştırılması

Year 2024, Volume: 3 Issue: 2, 62 - 74, 12.12.2024
https://doi.org/10.5281/zenodo.14344182

Abstract

Bu çalışma, demir oksit-grafen (-Fe2O3-G) kompozit malzemelerin sentezine ve bunların n-tipi silisyum (n-Si) yarıiletkeni ile oluşturulan cihazlardaki performanslarının hem karanlık hem de aydınlık koşullardaki değerlendirilmesine odaklanmaktadır. İdealite faktörü (n= 2,59) bariyer yüksekliği (Φb = 0,74 eV) ve seri direnç (Rs = 70 kΩ) gibi elektriksel parametreler karanlıkta alınan I-V ölçümlerinden Termiyonik Emisyon (TE) ve Norde yöntemleri kullanılarak belirlenmiştir. Cihazın fotoelektrik özellikleri aydınlatma altında da incelenmiş ve Fe2O3-G/n-Si cihazının harici bir güç kaynağı olmadan çalışarak kendi kendine güç sağlama davranışı sergilediği ortaya çıkmıştır. Aygıt, 0 voltta maksimum ON/OFF oranına (32496) ve spesifik dedektiviteye (D*, 26,6 Jones), -2 voltta da maximum duyarlılığa (R, 98 mAW-1) ulaşmıştır. Bu sonuçlar, cihazın özellikle kendi kendine güç sağlayan uygulamalarda verimli ışık algılama potansiyeline sahip olduğunu vurgulamaktadır.

References

  • Abdel-Salam, A. I., Gomaa, I., Khalid, A., & Soliman, T. S. (2022). Investigation of raman spectrum, structural, morphological, and optical features of Fe2O3 and Fe2O3/reduced graphene oxide hybrid nanocomposites. Physica Scripta, 97(12), 125807. https://doi.org/10.1088/1402-4896/ac9c38
  • Alam, N., Ullah, A., Khan, Y., Oh, W. C., & Ullah, K. (2018). Fabrication and enhancement in photoconductive response of α -Fe2O3/graphene nanocomposites as anode material. Journal of Materials Science Materials in Electronics, 29(20), 17786–17794. https://doi.org/10.1007/s10854-018-9886-2
  • Alshareefi, S. J. A., & Al-Nafiey, A. (2024). Graphene and ZnO NPs-enhanced photodetectors based on SiO NWs: Synthesis, characterization, and applications. Results in Optics, 16, 100690. https://doi.org/10.1016/j.rio.2024.100690
  • Aydoğan, A., İncekara, M., & Türüt, A. (2010). Determination of contact parameters of Au/Carmine/n-Si Schottky device. Thin Solid Films, 518(23), 7156–7160. https://doi.org/10.1016/j.tsf.2010.06.019
  • Bozkurt, G. (2020). Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microemulsion Method. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 890–897. https://doi.org/10.18185/erzifbed.742160
  • Can, M. M., Coşkun, M., & Fırat, T. (2012). A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542, 241–247. https://doi.org/10.1016/j.jallcom.2012.07.091
  • Daş, E. (2022). Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science, 26(5), 1000–1009. https://doi.org/10.16984/saufenbilder.1129742
  • Daş, E., Incekara, U., & Aydoğan, A. (2021). A comparative study on electrical characteristics of Ni/n-Si and Ni/p-Si Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature. Optical Materials, 119, 111380. https://doi.org/10.1016/j.optmat.2021.111380
  • Daş, E., & Yurtcan, A. B. (2022). Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes. Journal of Anatolian Physics and Astronomy, 1(2), 1–17.
  • Erdoğan, M., Orhan, Z., & Daş, E. (2022). Synthesis of electron-rich thiophene triphenylamine based organic material for photodiode applications. Optical Materials, 128, 112446. https://doi.org/10.1016/j.optmat.2022.112446
  • Gao, W., Li, Y., Zhao, J., Zhang, Z., Tang, W., Wang, J., Wu, Z., & Li, Z. (2022). Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chemical Research in Chinese Universities, 38(4), 1097–1104. https://doi.org/10.1007/s40242-022-1442-1
  • Ghobadi, A., Ghobadi, T. G. U., Karadas, F., & Ozbay, E. (2019). Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 7(14). https://doi.org/10.1002/adom.201900028
  • Güllü, Ö., Aydoğan, Ş., & Türüt, A. (2008). Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23(7), 075005. https://doi.org/10.1088/0268-1242/23/7/075005
  • Gupta, R., Ghosh, K., & Kahol, P. (2009). Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), 933–936. https://doi.org/10.1016/j.cap.2008.09.007
  • Han, L. H., Liu, H., & Wei, Y. (2011). In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technology, 207(1–3), 42–46. https://doi.org/10.1016/j.powtec.2010.10.008
  • Idisi, D. O., Ahia, C. C., Meyer, E. L., Bodunrin, J. O., & Benecha, E. M. (2023). Graphene oxide:Fe2O3 nanocomposites for photodetector applications: experimental and ab initio density functional theory study. RSC Advances, 13(9), 6038–6050. https://doi.org/10.1039/d3ra00174a
  • Kim, S., Kim, M., & Kim, H. (2024). Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy, 109725. https://doi.org/10.1016/j.nanoen.2024.109725
  • Li, Y., & Park, C. W. (1998). Particle Size Distribution in the Synthesis of Nanoparticles Using Microemulsions. Langmuir, 15(4), 952–956. https://doi.org/10.1021/la980550z
  • Lu, W., Guo, X., Yang, B., Wang, S., Liu, Y., Yao, H., Liu, C., & Pang, H. (2019). Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 6(19), 4922–4948. https://doi.org/10.1002/celc.201901006
  • Middya, S., Layek, A., Dey, A., Datta, J., Das, M., Banerjee, C., & Ray, P. P. (2014). Role of zinc oxide nanomorphology on Schottky diode properties. Chemical Physics Letters, 610–611, 39–44. https://doi.org/10.1016/j.cplett.2014.07.003
  • Muhajir, M., Puspitasari, P., & Razak, J. A. (2019). Synthesis and Applications of Hematite α-Fe2O3 : a Review. Journal of Mechanical Engineering Science and Technology (JMEST), 3(2), 51–58. https://doi.org/10.17977/um016v3i22019p051
  • Norde, H. (1979). A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052–5053. https://doi.org/10.1063/1.325607
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
  • Ramakrishnan, K., Ajitha, B., & Reddy, Y. a. K. (2023). Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions. Sensors and Actuators. A, Physical, 349, 114051. https://doi.org/10.1016/j.sna.2022.114051
  • Saleem, S., Ashiq, M. N., Manzoor, S., Ali, U., Liaqat, R., Algahtani, A., Mujtaba, S., Tirth, V., Alsuhaibani, A. M., Refat, M. S., Ali, A., Aslam, M., & Zaman, A. (2023). Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application. Journal of Materials Research and Technology, 25, 6150–6166. https://doi.org/10.1016/j.jmrt.2023.07.065
  • Sarkar, K., & Kumar, P. (2024). Nanostructured carbon heterojunctions for broadband photodetection: Development roadmap, emerging technologies, and future perspectives. Carbon, 219, 118842. https://doi.org/10.1016/j.carbon.2024.118842
  • Sun, M., Liu, H., Liu, Y., Qu, J., & Li, J. (2015). Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 7(4), 1250–1269. https://doi.org/10.1039/c4nr05838k
  • Talebi, S., & Eshghi, H. (2023). Achievement of high infrared photoresponse in n-MoO3/p-Si heterostructure photodiode prepared via the thermal oxidation method, the influence of oxygen flow rate. Materials Chemistry and Physics, 303, 127792. https://doi.org/10.1016/j.matchemphys.2023.127792
  • Wang, S., Liu, H., Cao, Z., Wang, X., Zhang, L., Ding, J., Xue, Y., Han, T., Li, F., Shan, L., & Long, M. (2023). Highly Sensitive Long‐Wave Infrared Photodetector Based on Two‐Dimensional Hematite α‐Fe2O3. Advanced Optical Materials, 11(19). https://doi.org/10.1002/adom.202300382
  • Xiong, G., Zhang, G., & Feng, W. (2024). High performance photodetectors by integrating CsPbBr3 perovskite directly on the germanium wafer. Materials Research Bulletin, 179, 112959. https://doi.org/10.1016/j.materresbull.2024.112959
  • Yildirim, G. B., & Daş, E. (2023). The synthesis of MgO and MgO-graphene nanocomposite materials and their diode and photodiode applications. Physica Scripta, 98(8), 085911. https://doi.org/10.1088/1402-4896/ace249
  • Yurtcan, A. B., & Daş, E. (2018). Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy, 43(40), 18691–18701. https://doi.org/10.1016/j.ijhydene.2018.06.186
There are 32 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications
Journal Section Research Articles
Authors

Elif Daş 0000-0002-3149-6016

Gamze Bozkurt

Early Pub Date December 10, 2024
Publication Date December 12, 2024
Submission Date August 5, 2024
Acceptance Date October 31, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Daş, E., & Bozkurt, G. (2024). Investigation of Photo-Electrial Properties in (Fe2O3-G)/n-Si Device. Journal of Anatolian Physics and Astronomy, 3(2), 62-74. https://doi.org/10.5281/zenodo.14344182