Research Article
BibTex RIS Cite

Effects of Drought Stress on Germination and Seedling Growth of Seed Primed with Boron in Spinach

Year 2024, , 201 - 207, 30.09.2024
https://doi.org/10.56430/japro.1535196

Abstract

This study aimed to examine the effects of seed priming with different boron concentrations on the germination and seedling growth of spinach under drought-stress conditions. Seeds of the spinach cultivar Matador and sodium borate (Na2B8O13.4H2O) were used as materials. The seeds were primed with 0 (distilled water), 1, 10, 100, 500, and 1000 ppm B for 24 hours, with unprimed seeds serving as a control. Drought stress was induced by polyethylene glycol (PEG 6000) solution at a water potential of -3 bar and distilled water denoted as control conditions. A standard germination test was performed between papers at 20°C for 14 days. The germination percentage, mean germination time, germination index, seedling growth parameters, and root/shoot length ratio were investigated. The findings revealed that drought stress reduced germination percentage, germination index, and seedling growth of unprimed seeds of spinach. However, boron priming improved these parameters while mitigating the negative effects of drought stress. Under drought conditions, seed priming with 1 ppm B shortened mean germination time. Similarly, seedling fresh and dry weight of spinach were improved by seed priming with 100-1000 ppm B, whereas root growth was stimulated by 10 ppm B. The highest root/shoot ratio was found at 10 ppm B. Boron priming was more efficient in promoting seedling growth than germination in spinach. As a result, seed priming with 10-100 ppm B should be recommended to improve the germination and seedling growth performance of spinach in the event of drought stress after planting.

Thanks

The author would like to thank PhD student Pınar Harmancı, and MSc student Elif Yaman for their assistance in counting germination scores.

References

  • Ancy, U. A., Latha, A., & Stanly, N. (2022). Effect of nutripriming treatments on growth parameters of seedlings in tray nursery of rice: Effect of nutripriming on tray nursery of rice. Journal of AgriSearch, 9(1), 59-62. https://doi.org/10.21921/jas.v9i01.9895
  • Bonilla, I., El-Hamdaoui, A., & Bolaños, L. (2004). Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant and Soil, 267, 97-107. https://doi.org/10.1007/s11104-005-4689-7
  • Bradford, K. J. (1986). Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience, 21(5), 1105-1112. https://doi.org/10.21273/HORTSCI.21.5.1105
  • Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Van Camp, J. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. https://doi.org/10.1016/j.foodchem.2007.11.056
  • Chakraborty, P., & Bose, B. (2020). Effects of magnesium nitrate and boric acid on germination and seedling growth parameters of wheat (Triticum aestivum L.) var. HUW-468. Journal of Pharmacognosy and Phytochemistry, 9(4), 804-808.
  • Chakraborty, P., & Dwivedi, P. (2023). Role of boron as priming agent on biochemical and antioxidant system in two wheat varieties against heat stress. Journal of Plant Growth Regulation, 42, 7530-7546. https://doi.org/10.1007/s00344-023-11029-5
  • Chen, K., & Arora, R. (2011). Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Science, 180(2), 212-220. https://doi.org/10.1016/j.plantsci.2010.08.007
  • Düzgüneş, O., Kesici, T., & Gürbüz, F. (1983). Statistic methods 1. Ankara Üniversitesi Ziraat Fakültesi Yayını. (In Turkish).
  • Farooq, M., Atique-ur-Rehman, Aziz, T., & Habib, M. (2011). Boron nutripriming improves the germination and early seedling growth of rice (Oryza sativa L.). Journal of Plant Nutrition, 34(10), 1507-1515. https://doi.org/10.1080/01904167.2011.585207
  • Imran, M., Mahmood, A., Römheld, V., & Neumann, G. (2013). Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49, 141-148. https://doi.org/10.1016/j.eja.2013.04.001
  • Imran, M., Mahmood, A., Neumann, G., & Boelt, B. (2021). Zinc seed priming improves spinach germination at low temperature. Agriculture, 11(3), 271. https://doi.org/10.3390/agriculture11030271
  • Iqbal, S., Farooq, M., Nawaz, A., Rehman, A. U., & Rehman, A. (2012). Optimizing boron seed priming treatments for improving the germination and early seedling growth of wheat. Journal of Agriculture and Social Sciences, 8, 57-61.
  • Iqbal, S., Farooq, M., Cheema, S. A., & Afzal, I. (2017). Boron seed priming improves the seedling emergence, growth, grain yield and grain biofortification of bread wheat. International Journal of Agriculture and Biology, 19(1), 177-182.
  • ISTA. (2018). International rules for seed testing. International Seed Testing Association. https://www.seedtest.org/en/
  • Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 35, 1381-1396. https://doi.org/10.1007/s11738-012-1186-5
  • Kaur, S., Gupta, A. K., & Kaur, N. (2002). Effect of osmo and hydro‐priming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation, 37, 17‐22. https://doi.org/10.1023/A:1020310008830
  • Kaya, M. D., & Ergin, N. (2023). Boron seed treatments induce germination and seedling growth by reducing seed-borne pathogens in safflower (Carthamus tinctorius L.). Journal of Plant Protection Research, 63(4), 481-487. https://doi.org/10.24425/jppr.2023.147830
  • Kumar, V., Singhal, R. K., Kumar, N., & Bose, B. (2020). Micro-nutrient seed priming: A pragmatic approach towards abiotic stress management. In A. Rakshit, H. Singh, A. Singh, U. Singh & L. Fraceto (Eds.), New frontiers in stress management for durable agriculture (pp. 231-255). Springer. https://doi.org/10.1007/978-981-15-1322-0_14
  • Majda, C., Khalid, D., Aziz, A., Rachid, B., Badr, A. S., Lotfi, A., & Mohamed, B. (2019). Nutri-priming as an efficient means to improve the agronomic performance of molybdenum in common bean (Phaseolus vulgaris L.). Science of the Total Environment, 661, 654-663. https://doi.org/10.1016/j.scitotenv.2019.01.188
  • McDonald, M. B. (2000). Seed priming. In M. Black & J. D. Bewley (Eds.), Seed technology and biological basis (pp. 287-325). Sheffield Academic Press.
  • Memon, N. U. N., Gandahi, M. B., Pahoja, V. M., & Sharif, N. (2013). Response of seed priming with boron on germination and seedling sprouts of broccoli. International Journal of Agricultural Science and Research, 3(2), 183-194.
  • Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. https://doi.org/10.1104%2Fpp.51.5.914
  • Mirshekari, B. (2012). Seed priming with iron and boron enhances germination and yield of dill (Anethum graveolens). Turkish Journal of Agriculture and Forestry, 36(1), 27-33. https://doi.org/10.3906/tar-1007-966
  • Muhammad, I., Kolla, M., Volker, R., & Günter, N. (2015). Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. Journal of Plant Nutrition, 38(12), 1803-1821. https://doi.org/10.1080/01904167.2014.990094
  • Nciizah, A. D., Rapetsoa, M. C., Wakindiki, I. I., & Zerizghy, M. G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766
  • Pallaoro, D. S., Camili, E. C., Guimarães, S. C., & Albuquerque, M. C. D. F. (2016). Methods for priming maize seeds. Journal of Seed Science, 38(02), 148-154. https://doi.org/10.1590/2317-1545v38n2161132
  • Rasool, T., Ahmad, R., & Farooq, M. (2019). Seed priming with micronutrients for improving the quality and yield of hybrid maize. Gesunde Pflanzen, 71, 37-44. https://doi.org/10.1007/s10343-018-00440-8
  • Saha, D., Choyal, P., Mishra, U. N., Dey, P., Bose, B., Prathibha, M. D., Gupta, N. G., Mehta, B. K., Kumar, P., Pandey, S., Chauhan, J., & Singhal, R. K. (2022). Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress, 4, 100066. https://doi.org/10.1016/j.stress.2022.100066
  • Salehzade, H., Shishvan, M. I., Ghiyasi, M., Forouzin, F., & Siyahjani, A. A. (2009). Effect of seed priming on germination and seed¬ling growth of wheat (Triticum aestivum L.). Research Journal of Biological Sciences, 4(5), 629-631.
  • Shahverdi, M. A., Omidi, H., & Tabatabaei, S. J. (2017). Determination of optimum duration and concentration of stevia (Stevia rebaudiana Bert.) seed priming with boric acid (H3BO3). Türkiye Tarımsal Araştırmalar Dergisi, 4(1), 24-30. https://doi.org/10.19159/tutad.300701
  • Tang, D., Wei, F., Qin, S., Khan, A., Kashif, M. H., & Zhou, R. (2019). Polyethylene glycol induced drought stress strongly influences seed germination, root morphology and cytoplasm of different kenaf genotypes. Industrial Crops and Products, 137, 180-186. https://doi.org/10.1016/j.indcrop.2019.01.019
  • TÜİK. (2024). Bitkisel üretim istatistikleri. Türkiye İstatistik Kurumu (TÜİK). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (In Turkish)
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür sebzeleri. Ege Üniversitesi Basımevi. (In Turkish)
  • Waqas, M., Korres, N. E., Khan, M. D., Nizami, A. S., Deeba, F., Ali, I., & Hussain, H. (2019). Advances in the concept and methods of seed priming. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants (pp. 11-41). Springer.
  • Xia, F. S., Wang, Y. C., Zhu, H. S., Ma, J. Y., Yang, Y. Y., Tian, R., & Dong, K. H. (2019). Influence of priming with exogenous boron on the seed vigour of alfalfa (Medicago sativa L.). Legume Research-An International Journal, 42(6), 795-799. https://doi.org/10.18805/LR-449
  • Xia, F. S., Wang, F., Wang, Y. C., Wang, C. C., Tian, R., Ma, J. Y., Yang, Y. Y., Tian, R., & Dong, K. H. (2020). Influence of boron priming on the antioxidant ability of alfalfa seeds. Legume Research-An International Journal, 43(6), 788-793. https://doi.org/10.18805/LR-536
  • Zargar, T. B., Ashraf, F., & Veres, S. (2021). Peg-induced drought stress effects on spinach germination parameters. Review on Agriculture and Rural Development, 10(1-2), 126-132. https://doi.org/10.14232/rard.2021.1-2.126-132
Year 2024, , 201 - 207, 30.09.2024
https://doi.org/10.56430/japro.1535196

Abstract

References

  • Ancy, U. A., Latha, A., & Stanly, N. (2022). Effect of nutripriming treatments on growth parameters of seedlings in tray nursery of rice: Effect of nutripriming on tray nursery of rice. Journal of AgriSearch, 9(1), 59-62. https://doi.org/10.21921/jas.v9i01.9895
  • Bonilla, I., El-Hamdaoui, A., & Bolaños, L. (2004). Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant and Soil, 267, 97-107. https://doi.org/10.1007/s11104-005-4689-7
  • Bradford, K. J. (1986). Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience, 21(5), 1105-1112. https://doi.org/10.21273/HORTSCI.21.5.1105
  • Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhé, R., & Van Camp, J. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 108(2), 649-656. https://doi.org/10.1016/j.foodchem.2007.11.056
  • Chakraborty, P., & Bose, B. (2020). Effects of magnesium nitrate and boric acid on germination and seedling growth parameters of wheat (Triticum aestivum L.) var. HUW-468. Journal of Pharmacognosy and Phytochemistry, 9(4), 804-808.
  • Chakraborty, P., & Dwivedi, P. (2023). Role of boron as priming agent on biochemical and antioxidant system in two wheat varieties against heat stress. Journal of Plant Growth Regulation, 42, 7530-7546. https://doi.org/10.1007/s00344-023-11029-5
  • Chen, K., & Arora, R. (2011). Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea). Plant Science, 180(2), 212-220. https://doi.org/10.1016/j.plantsci.2010.08.007
  • Düzgüneş, O., Kesici, T., & Gürbüz, F. (1983). Statistic methods 1. Ankara Üniversitesi Ziraat Fakültesi Yayını. (In Turkish).
  • Farooq, M., Atique-ur-Rehman, Aziz, T., & Habib, M. (2011). Boron nutripriming improves the germination and early seedling growth of rice (Oryza sativa L.). Journal of Plant Nutrition, 34(10), 1507-1515. https://doi.org/10.1080/01904167.2011.585207
  • Imran, M., Mahmood, A., Römheld, V., & Neumann, G. (2013). Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49, 141-148. https://doi.org/10.1016/j.eja.2013.04.001
  • Imran, M., Mahmood, A., Neumann, G., & Boelt, B. (2021). Zinc seed priming improves spinach germination at low temperature. Agriculture, 11(3), 271. https://doi.org/10.3390/agriculture11030271
  • Iqbal, S., Farooq, M., Nawaz, A., Rehman, A. U., & Rehman, A. (2012). Optimizing boron seed priming treatments for improving the germination and early seedling growth of wheat. Journal of Agriculture and Social Sciences, 8, 57-61.
  • Iqbal, S., Farooq, M., Cheema, S. A., & Afzal, I. (2017). Boron seed priming improves the seedling emergence, growth, grain yield and grain biofortification of bread wheat. International Journal of Agriculture and Biology, 19(1), 177-182.
  • ISTA. (2018). International rules for seed testing. International Seed Testing Association. https://www.seedtest.org/en/
  • Jisha, K. C., Vijayakumari, K., & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 35, 1381-1396. https://doi.org/10.1007/s11738-012-1186-5
  • Kaur, S., Gupta, A. K., & Kaur, N. (2002). Effect of osmo and hydro‐priming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation, 37, 17‐22. https://doi.org/10.1023/A:1020310008830
  • Kaya, M. D., & Ergin, N. (2023). Boron seed treatments induce germination and seedling growth by reducing seed-borne pathogens in safflower (Carthamus tinctorius L.). Journal of Plant Protection Research, 63(4), 481-487. https://doi.org/10.24425/jppr.2023.147830
  • Kumar, V., Singhal, R. K., Kumar, N., & Bose, B. (2020). Micro-nutrient seed priming: A pragmatic approach towards abiotic stress management. In A. Rakshit, H. Singh, A. Singh, U. Singh & L. Fraceto (Eds.), New frontiers in stress management for durable agriculture (pp. 231-255). Springer. https://doi.org/10.1007/978-981-15-1322-0_14
  • Majda, C., Khalid, D., Aziz, A., Rachid, B., Badr, A. S., Lotfi, A., & Mohamed, B. (2019). Nutri-priming as an efficient means to improve the agronomic performance of molybdenum in common bean (Phaseolus vulgaris L.). Science of the Total Environment, 661, 654-663. https://doi.org/10.1016/j.scitotenv.2019.01.188
  • McDonald, M. B. (2000). Seed priming. In M. Black & J. D. Bewley (Eds.), Seed technology and biological basis (pp. 287-325). Sheffield Academic Press.
  • Memon, N. U. N., Gandahi, M. B., Pahoja, V. M., & Sharif, N. (2013). Response of seed priming with boron on germination and seedling sprouts of broccoli. International Journal of Agricultural Science and Research, 3(2), 183-194.
  • Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916. https://doi.org/10.1104%2Fpp.51.5.914
  • Mirshekari, B. (2012). Seed priming with iron and boron enhances germination and yield of dill (Anethum graveolens). Turkish Journal of Agriculture and Forestry, 36(1), 27-33. https://doi.org/10.3906/tar-1007-966
  • Muhammad, I., Kolla, M., Volker, R., & Günter, N. (2015). Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. Journal of Plant Nutrition, 38(12), 1803-1821. https://doi.org/10.1080/01904167.2014.990094
  • Nciizah, A. D., Rapetsoa, M. C., Wakindiki, I. I., & Zerizghy, M. G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon, 6(8), e04766. https://doi.org/10.1016/j.heliyon.2020.e04766
  • Pallaoro, D. S., Camili, E. C., Guimarães, S. C., & Albuquerque, M. C. D. F. (2016). Methods for priming maize seeds. Journal of Seed Science, 38(02), 148-154. https://doi.org/10.1590/2317-1545v38n2161132
  • Rasool, T., Ahmad, R., & Farooq, M. (2019). Seed priming with micronutrients for improving the quality and yield of hybrid maize. Gesunde Pflanzen, 71, 37-44. https://doi.org/10.1007/s10343-018-00440-8
  • Saha, D., Choyal, P., Mishra, U. N., Dey, P., Bose, B., Prathibha, M. D., Gupta, N. G., Mehta, B. K., Kumar, P., Pandey, S., Chauhan, J., & Singhal, R. K. (2022). Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress, 4, 100066. https://doi.org/10.1016/j.stress.2022.100066
  • Salehzade, H., Shishvan, M. I., Ghiyasi, M., Forouzin, F., & Siyahjani, A. A. (2009). Effect of seed priming on germination and seed¬ling growth of wheat (Triticum aestivum L.). Research Journal of Biological Sciences, 4(5), 629-631.
  • Shahverdi, M. A., Omidi, H., & Tabatabaei, S. J. (2017). Determination of optimum duration and concentration of stevia (Stevia rebaudiana Bert.) seed priming with boric acid (H3BO3). Türkiye Tarımsal Araştırmalar Dergisi, 4(1), 24-30. https://doi.org/10.19159/tutad.300701
  • Tang, D., Wei, F., Qin, S., Khan, A., Kashif, M. H., & Zhou, R. (2019). Polyethylene glycol induced drought stress strongly influences seed germination, root morphology and cytoplasm of different kenaf genotypes. Industrial Crops and Products, 137, 180-186. https://doi.org/10.1016/j.indcrop.2019.01.019
  • TÜİK. (2024). Bitkisel üretim istatistikleri. Türkiye İstatistik Kurumu (TÜİK). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (In Turkish)
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür sebzeleri. Ege Üniversitesi Basımevi. (In Turkish)
  • Waqas, M., Korres, N. E., Khan, M. D., Nizami, A. S., Deeba, F., Ali, I., & Hussain, H. (2019). Advances in the concept and methods of seed priming. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants (pp. 11-41). Springer.
  • Xia, F. S., Wang, Y. C., Zhu, H. S., Ma, J. Y., Yang, Y. Y., Tian, R., & Dong, K. H. (2019). Influence of priming with exogenous boron on the seed vigour of alfalfa (Medicago sativa L.). Legume Research-An International Journal, 42(6), 795-799. https://doi.org/10.18805/LR-449
  • Xia, F. S., Wang, F., Wang, Y. C., Wang, C. C., Tian, R., Ma, J. Y., Yang, Y. Y., Tian, R., & Dong, K. H. (2020). Influence of boron priming on the antioxidant ability of alfalfa seeds. Legume Research-An International Journal, 43(6), 788-793. https://doi.org/10.18805/LR-536
  • Zargar, T. B., Ashraf, F., & Veres, S. (2021). Peg-induced drought stress effects on spinach germination parameters. Review on Agriculture and Rural Development, 10(1-2), 126-132. https://doi.org/10.14232/rard.2021.1-2.126-132
There are 37 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Gamze Kaya 0000-0002-9815-2672

Publication Date September 30, 2024
Submission Date August 18, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2024

Cite

APA Kaya, G. (2024). Effects of Drought Stress on Germination and Seedling Growth of Seed Primed with Boron in Spinach. Journal of Agricultural Production, 5(3), 201-207. https://doi.org/10.56430/japro.1535196