Research Article
BibTex RIS Cite

Genome-Wide Analysis and Characterization of FBA (Fructose 1,6-bisphosphate aldolase) Gene Family of Phaseolus vulgaris L

Year 2024, Volume: 5 Issue: 1, 30 - 40, 31.03.2024
https://doi.org/10.56430/japro.1432135

Abstract

Fructose-1,6-biphosphate aldolase (FBA) genes have important roles in plant stress responses. At the same time, these genes positively affect growth and development in plants. FBA is involved in gluconeogenesis, glycolysis, and the Calvin-Benson cycle, and it is an enzyme that plays an important role in signal transduction of these stages. This study aims to determine and characterize the FBA gene family in the bean genome. As a result of the study, 7 Pvul-FBA genes were determined in the bean (Phaseolus vulgaris L.) genome. The highest amino acid number of Pvul-FBA proteins was determined in the Pvul-FBA-1 gene (1374), and the highest molecular weight (43.03 kDa) was determined in the Pvul-FBA-7 gene. Again, the highest isoelectric point (8.03) was determined in the Pvul-FBA-3 gene. It has been determined that the Pvul-FBA-6/Pvul-FBA-7 genes are segmental duplicated genes. The main four groups were obtained according to the phylogenetic analysis consisting of FBA proteins of three plants (P. vulgaris, Glycine max, and Arabidopsis thaliana). As a result of interproscan analysis, Motif-1, 2, 3, 4 and 5 were found to contain the fructose-bisphosphate aldolase domain. According to in silico gene expression analysis, it was determined that the expression rates of Pvul-FBA genes increased or decreased under salt and drought stress conditions. Synteny analyses of FBA genes in common bean and A. thaliana plants showed that these three plants have a relationship in terms of FBA genes. The results of this research will allow a better designation of the molecular structure of the FBA gene family in common bean.

References

  • Abbasi, F. M., & Komatsu, S. (2004). A proteomic approach to analyze salt‐responsive proteins in rice leaf sheath. Proteomics, 4(7), 2072-2081. https://doi.org/10.1002/pmic.200300741
  • Akibode, C. S., & Maredia, M. K. (2012). Global and regional trends in production, trade and consumption of food legume crops. Research in Agricultural & Applied Economics (AgEcon) Search. https://ageconsearch.umn.edu/record/136293?v=pdf
  • Anderson, L. E., Ringenberg, M. R., Brown, V. K., & Carol, A. A. (2005). Both chloroplastic and cytosolic phosphofructoaldolase isozymes are present in the pea leaf nucleus. Protoplasma, 225(3), 235-242. https://doi.org/10.1007/s00709-005-0099-1
  • Aygören, A. S., Güneş, E., Muslu, S., Kasapoğlu, A. G., Yiğider, E., Aydın, M., Büyük, İ., & İlhan, E. (2022). Genome-wide analysis and characterization of SABATH gene family in Phaseolus vulgaris genotypes subject to melatonin under drought and salinity stresses. Plant Molecular Biology Reporter, 41, 242-259. https://doi.org/10.1007/s11105-022-01363-5
  • Bailey, T. L., Williams, N., Misleh, C., & Li, W. W. (2006). MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34(suppl_2), W369-W373. https://doi.org/10.1093/nar/gkl198
  • Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11-38. https://doi.org/10.1111/j.1365-3040.2007.01727.x
  • Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5, 1-10. https://doi.org/10.12688/f1000research.7678.1
  • Blair, M. W., Pedraza, F., Buendia, H. F., Gaitán-Solís, E., Beebe, S. E., Gepts, P., & Tohme, J. (2003). Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 107(8), 1362-1374. https://doi.org/10.1007/s00122-003-1398-6
  • Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.)–model food legumes. Plant and Soil, 252, 55-128. https://doi.org/10.1023/A:1024146710611
  • Cai, B., Li, Q., Xu, Y., Yang, L., Bi, H., & Ai, X. (2016). Genome-wide analysis of the fructose 1, 6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato. Plant Physiology and Biochemistry, 108, 251-265. https://doi.org/10.1016/j.plaphy.2016.07.019
  • Cai, B., Li, Q., Liu, F., Bi, H., & Ai, X. (2018). Decreasing fructose‐1, 6‐bisphosphate aldolase activity reduces plant growth and tolerance to chilling stress in tomato seedlings. Physiologia Plantarum, 163(2), 247-258. https://doi.org/10.1111/ppl.12682
  • Carpici, E. B., Celik, N., & Bayram, G. (2009). Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 8(19), 4918-4922.
  • Carvalho, D. D. C., Mello, S. C. M. de, Lobo Júnior, M., & Geraldine, A. M. (2011). Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46(8), 822–828. https://doi.org/10.1590/S0100-204X2011000800006
  • Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Cho, Y. H., & Yoo, S. D. (2011). Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genetics, 7(1), e1001263. https://doi.org/10.1371/journal.pgen.1001263
  • Cichy, K. A., Wiesinger, J. A., & Mendoza, F. A. (2015). Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 128(8), 1555-1567. https://doi.org/10.1007/s00122-015-2531-z
  • Dennis, E. S., Gerlach, W. L., Walker, J. C., Lavin, M., & Peacock, W. J. (1988). Anaerobically regulated aldolase gene of maize: A chimaeric origin?. Journal of Molecular Biology, 202(4), 759-767. https://doi.org/10.1016/0022-2836(88)90556-6
  • Fan, W., Zhang, Z., & Zhang, Y. (2009). Cloning and molecular characterization of fructose-1, 6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Reports, 28(6), 975-984. https://doi.org/10.1007/s00299-009-0702-6
  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). CROTstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436-442. https://doi.org/10.1016/j.pbi.2006.05.014
  • Graham, P. H., & Ranalli, P. (1997). Common bean (Phaseolus vulgaris L.). Field Crops Research, 53(1-3), 131-146. https://doi.org/10.1016/S0378-4290(97)00112-3
  • Guo, A. Y., Zhu, Q. H., Chen, X., & Luo, J. C. (2007). GSDS: A gene structure display server. Hereditas, 29(8), 1023-1026. https://doi.org/10.1360/yc-007-1023
  • Hiz, M. C., Canher, B., Niron, H., & Turet, M. (2014). Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PloS One, 9(3), e92598. https://doi.org/10.1371/journal.pone.0092598
  • Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35(suppl_2), W585-W587. https://doi.org/10.1093/nar/gkm259
  • İlhan, E. (2018). Eucalyptus grandis YABBY transkripsiyon faktörlerinin genom bazında analizi. Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 158-166. https://doi.org/10.19159/tutad.408654 (In Turkish)
  • Kagaya, Y., Nakamura, H., Ejiri, S. I., Tsutsumi, K. I., & Hidaka, S. (1995). The promoter from the rice nuclear gene encoding chloroplast aldolase confers mesophyll-specific and light-regulated expression in transgenic tobacco. Molecular and General Genetics MGG, 248, 668-674. https://doi.org/10.1007/BF02191706
  • Kasapoğlu, A. G., Aygören, A. S., Muslu, S., Öner, B. M., Isıyel, M., Yaprak, E., Uçar, S., Aydınyurt, R., Uzun, B., İlhan, E., & Aydın, M. (2022). PvTLP genlerinin genom çaplı tespit ve karakterizasyonu. Avrupa Bilim ve Teknoloji Dergisi, 34, 676-684. https://doi.org/10.31590/ejosat.1083519 (In Turkish)
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845-858. https://doi.org/10.1038/nprot.2015.053
  • Khanna, S. M., Taxak, P. C., Jain, P. K., Saini, R., & Srinivasan, R. (2014). Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress. Applied Biochemistry and Biotechnology, 173(8), 2241-2253. https://doi.org/10.1007/s12010-014-1028-6
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. https://doi.org/10.1093/nar/30.1.325
  • Letunic, I., & Bork, P. (2011). Interactive tree of life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39(suppl_2), W475-W478. https://doi.org/10.1093/nar/gkr201
  • Li, Z. Q., Zhang, Y., Li, H., Su, T. T., Liu, C. G., Han, Z. C., Wang, A. Y., & Zhu, J. B. (2021). Genome-wide characterization and expression analysis provide basis to the biological function of cotton FBA genes. Frontiers in Plant Science, 12, 696698. https://doi.org/10.3389/fpls.2021.696698
  • Lu, W., Tang, X., Huo, Y., Xu, R., Qi, S., Huang, J., Zheng, C., & Wu, C. A. (2012). Identification and characterization of fructose 1, 6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 503(1), 65-74. https://doi.org/10.1016/j.gene.2012.04.042
  • Lv, G. Y., Guo, X. G., Xie, L. P., Xie, C. G., Zhang, X. H., Yang, Y., Xiao, L., Tang, Y. Y., Pan, X. L., Guo, A. G., & Xu, H. (2017). Molecular characterization, gene evolution, and expression analysis of the fructose-1, 6-bisphosphate aldolase (FBA) gene family in wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 1030. https://doi.org/10.3389/fpls.2017.01030
  • Marsh, J. J., & Lebherz, H. G. (1992). Fructose-bisphosphate aldolases: An evolutionary history. Trends in Biochemical Sciences, 17(3), 110-113. https://doi.org/10.1016/0968-0004(92)90247-7
  • Michelis, R., & Gepstein, S. (2000). Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast. Plant Molecular Biology, 44(4), 487-498. https://doi.org/10.1023/A:1026528319769
  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. https://doi.org/10.1038/nmeth.1226
  • Murad, A. M., Molinari, H. B. C., Magalhaes, B. S., Franco, A. C., Takahashi, F. S. C., de Oliveira-, N. G., Franco, O. L., & Quirino, B. F. (2014). Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PLoS One, 9(6), e98463. https://doi.org/10.1371/journal.pone.0098463
  • Oner, B. M., Ilhan, E., Kasapoglu, A. G., Muslu, S., Aygoren, A. S., Ucar, S., Yaprak, E., Isıyel, M., Aydinyurt, R., & Aydin, M. (2022). Genome wide analysis and characterization of NPR-like gene family of Phaseolus vulgaris L. Natural Products and Biotechnology, 2(1), 23-41.
  • Pelzer-Reith, B., Penger, A., & Schnarrenberger, C. (1993). Plant aldolase: cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Molecular Biology, 21, 331-340. https://doi.org/10.1007/BF00019948
  • Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: Protein domains identifier. Nucleic Acids Research, 33(suppl_2), W116-W120. https://doi.org/10.1093/nar/gki442
  • Rutter, W. J. (1964). Evolution of aldolase. Federation Proceeding, 23, 48-57.
  • Sarry, J. E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J. B., Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., & Bourguignon, J. (2006). The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 6(7), 2180-2198. https://doi.org/10.1002/pmic.200500543
  • Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., ... & Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707-713. https://doi.org/10.1038/ng.3008
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504. https://doi.org/10.1101/gr.1239303
  • Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. https://doi.org/10.3390/molecules24132452
  • Shu, S., Chen, L., Lu, W., Sun, J., Guo, S., Yuan, Y., & Li, J. (2014). Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. Journal of Plant Research, 127(6), 763-773. https://doi.org/10.1007/s10265-014-0653-z
  • Strand, Å., Zrenner, R., Trevanion, S., Stitt, M., Gustafsson, P., & Gardeström, P. (2000). Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose‐1, 6‐bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. The Plant Journal, 23(6), 759-770. https://doi.org/10.1046/j.1365-313x.2000.00847.x
  • Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34(suppl_2), W609-W612. https://doi.org/10.1093/nar/gkl315
  • Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. https://doi.org/10.1016/j.sajb.2016.03.011
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  • Voorrips, R. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1), 77-78. https://doi.org/10.1093/jhered/93.1.77
  • Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., Lee, T.-ho, Jin. H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7), e49-e49. https://doi.org/10.1093/nar/gkr1293
  • Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., & Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Frontiers in Plant Science, 10, 1336. https://doi.org/10.3389/fpls.2019.01336
  • Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Evolution, 42(1), 225-249.
  • Yamada, S., Komori, T., Hashimoto, A., Kuwata, S., Imaseki, H., & Kubo, T. (2000). Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Science, 154(1), 61-69. https://doi.org/10.1016/S0168-9452(00)00188-6
  • Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. https://doi.org/10.1093/molbev/msm088
  • Yeken, M. Z., Kantar, F., Çancı, H., Özer, G., & Çiftçi, V. (2018). Breeding of dry bean cultivars using Phaseolus vulgaris landraces in Turkey. International Journal of Agricultural and Wildlife Sciences, 4(1), 45-54. https://doi.org/10.24180/ijaws.408794
  • Zhao, W., Liu, H., Zhang, L., Hu, Z., Liu, J., Hua, W., Xu, S., & Liu, J. (2019). Genome-wide identification and characterization of FBA gene family in polyploid crop Brassica napus. International Journal of Molecular Sciences, 20, 5749. https://doi.org/10.3390/ijms20225749
Year 2024, Volume: 5 Issue: 1, 30 - 40, 31.03.2024
https://doi.org/10.56430/japro.1432135

Abstract

References

  • Abbasi, F. M., & Komatsu, S. (2004). A proteomic approach to analyze salt‐responsive proteins in rice leaf sheath. Proteomics, 4(7), 2072-2081. https://doi.org/10.1002/pmic.200300741
  • Akibode, C. S., & Maredia, M. K. (2012). Global and regional trends in production, trade and consumption of food legume crops. Research in Agricultural & Applied Economics (AgEcon) Search. https://ageconsearch.umn.edu/record/136293?v=pdf
  • Anderson, L. E., Ringenberg, M. R., Brown, V. K., & Carol, A. A. (2005). Both chloroplastic and cytosolic phosphofructoaldolase isozymes are present in the pea leaf nucleus. Protoplasma, 225(3), 235-242. https://doi.org/10.1007/s00709-005-0099-1
  • Aygören, A. S., Güneş, E., Muslu, S., Kasapoğlu, A. G., Yiğider, E., Aydın, M., Büyük, İ., & İlhan, E. (2022). Genome-wide analysis and characterization of SABATH gene family in Phaseolus vulgaris genotypes subject to melatonin under drought and salinity stresses. Plant Molecular Biology Reporter, 41, 242-259. https://doi.org/10.1007/s11105-022-01363-5
  • Bailey, T. L., Williams, N., Misleh, C., & Li, W. W. (2006). MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34(suppl_2), W369-W373. https://doi.org/10.1093/nar/gkl198
  • Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11-38. https://doi.org/10.1111/j.1365-3040.2007.01727.x
  • Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 5, 1-10. https://doi.org/10.12688/f1000research.7678.1
  • Blair, M. W., Pedraza, F., Buendia, H. F., Gaitán-Solís, E., Beebe, S. E., Gepts, P., & Tohme, J. (2003). Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 107(8), 1362-1374. https://doi.org/10.1007/s00122-003-1398-6
  • Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.)–model food legumes. Plant and Soil, 252, 55-128. https://doi.org/10.1023/A:1024146710611
  • Cai, B., Li, Q., Xu, Y., Yang, L., Bi, H., & Ai, X. (2016). Genome-wide analysis of the fructose 1, 6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato. Plant Physiology and Biochemistry, 108, 251-265. https://doi.org/10.1016/j.plaphy.2016.07.019
  • Cai, B., Li, Q., Liu, F., Bi, H., & Ai, X. (2018). Decreasing fructose‐1, 6‐bisphosphate aldolase activity reduces plant growth and tolerance to chilling stress in tomato seedlings. Physiologia Plantarum, 163(2), 247-258. https://doi.org/10.1111/ppl.12682
  • Carpici, E. B., Celik, N., & Bayram, G. (2009). Effects of salt stress on germination of some maize (Zea mays L.) cultivars. African Journal of Biotechnology, 8(19), 4918-4922.
  • Carvalho, D. D. C., Mello, S. C. M. de, Lobo Júnior, M., & Geraldine, A. M. (2011). Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46(8), 822–828. https://doi.org/10.1590/S0100-204X2011000800006
  • Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Cho, Y. H., & Yoo, S. D. (2011). Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genetics, 7(1), e1001263. https://doi.org/10.1371/journal.pgen.1001263
  • Cichy, K. A., Wiesinger, J. A., & Mendoza, F. A. (2015). Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 128(8), 1555-1567. https://doi.org/10.1007/s00122-015-2531-z
  • Dennis, E. S., Gerlach, W. L., Walker, J. C., Lavin, M., & Peacock, W. J. (1988). Anaerobically regulated aldolase gene of maize: A chimaeric origin?. Journal of Molecular Biology, 202(4), 759-767. https://doi.org/10.1016/0022-2836(88)90556-6
  • Fan, W., Zhang, Z., & Zhang, Y. (2009). Cloning and molecular characterization of fructose-1, 6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Reports, 28(6), 975-984. https://doi.org/10.1007/s00299-009-0702-6
  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). CROTstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436-442. https://doi.org/10.1016/j.pbi.2006.05.014
  • Graham, P. H., & Ranalli, P. (1997). Common bean (Phaseolus vulgaris L.). Field Crops Research, 53(1-3), 131-146. https://doi.org/10.1016/S0378-4290(97)00112-3
  • Guo, A. Y., Zhu, Q. H., Chen, X., & Luo, J. C. (2007). GSDS: A gene structure display server. Hereditas, 29(8), 1023-1026. https://doi.org/10.1360/yc-007-1023
  • Hiz, M. C., Canher, B., Niron, H., & Turet, M. (2014). Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PloS One, 9(3), e92598. https://doi.org/10.1371/journal.pone.0092598
  • Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35(suppl_2), W585-W587. https://doi.org/10.1093/nar/gkm259
  • İlhan, E. (2018). Eucalyptus grandis YABBY transkripsiyon faktörlerinin genom bazında analizi. Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 158-166. https://doi.org/10.19159/tutad.408654 (In Turkish)
  • Kagaya, Y., Nakamura, H., Ejiri, S. I., Tsutsumi, K. I., & Hidaka, S. (1995). The promoter from the rice nuclear gene encoding chloroplast aldolase confers mesophyll-specific and light-regulated expression in transgenic tobacco. Molecular and General Genetics MGG, 248, 668-674. https://doi.org/10.1007/BF02191706
  • Kasapoğlu, A. G., Aygören, A. S., Muslu, S., Öner, B. M., Isıyel, M., Yaprak, E., Uçar, S., Aydınyurt, R., Uzun, B., İlhan, E., & Aydın, M. (2022). PvTLP genlerinin genom çaplı tespit ve karakterizasyonu. Avrupa Bilim ve Teknoloji Dergisi, 34, 676-684. https://doi.org/10.31590/ejosat.1083519 (In Turkish)
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845-858. https://doi.org/10.1038/nprot.2015.053
  • Khanna, S. M., Taxak, P. C., Jain, P. K., Saini, R., & Srinivasan, R. (2014). Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress. Applied Biochemistry and Biotechnology, 173(8), 2241-2253. https://doi.org/10.1007/s12010-014-1028-6
  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. https://doi.org/10.1093/nar/30.1.325
  • Letunic, I., & Bork, P. (2011). Interactive tree of life v2: Online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39(suppl_2), W475-W478. https://doi.org/10.1093/nar/gkr201
  • Li, Z. Q., Zhang, Y., Li, H., Su, T. T., Liu, C. G., Han, Z. C., Wang, A. Y., & Zhu, J. B. (2021). Genome-wide characterization and expression analysis provide basis to the biological function of cotton FBA genes. Frontiers in Plant Science, 12, 696698. https://doi.org/10.3389/fpls.2021.696698
  • Lu, W., Tang, X., Huo, Y., Xu, R., Qi, S., Huang, J., Zheng, C., & Wu, C. A. (2012). Identification and characterization of fructose 1, 6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 503(1), 65-74. https://doi.org/10.1016/j.gene.2012.04.042
  • Lv, G. Y., Guo, X. G., Xie, L. P., Xie, C. G., Zhang, X. H., Yang, Y., Xiao, L., Tang, Y. Y., Pan, X. L., Guo, A. G., & Xu, H. (2017). Molecular characterization, gene evolution, and expression analysis of the fructose-1, 6-bisphosphate aldolase (FBA) gene family in wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 1030. https://doi.org/10.3389/fpls.2017.01030
  • Marsh, J. J., & Lebherz, H. G. (1992). Fructose-bisphosphate aldolases: An evolutionary history. Trends in Biochemical Sciences, 17(3), 110-113. https://doi.org/10.1016/0968-0004(92)90247-7
  • Michelis, R., & Gepstein, S. (2000). Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast. Plant Molecular Biology, 44(4), 487-498. https://doi.org/10.1023/A:1026528319769
  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. https://doi.org/10.1038/nmeth.1226
  • Murad, A. M., Molinari, H. B. C., Magalhaes, B. S., Franco, A. C., Takahashi, F. S. C., de Oliveira-, N. G., Franco, O. L., & Quirino, B. F. (2014). Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PLoS One, 9(6), e98463. https://doi.org/10.1371/journal.pone.0098463
  • Oner, B. M., Ilhan, E., Kasapoglu, A. G., Muslu, S., Aygoren, A. S., Ucar, S., Yaprak, E., Isıyel, M., Aydinyurt, R., & Aydin, M. (2022). Genome wide analysis and characterization of NPR-like gene family of Phaseolus vulgaris L. Natural Products and Biotechnology, 2(1), 23-41.
  • Pelzer-Reith, B., Penger, A., & Schnarrenberger, C. (1993). Plant aldolase: cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Molecular Biology, 21, 331-340. https://doi.org/10.1007/BF00019948
  • Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: Protein domains identifier. Nucleic Acids Research, 33(suppl_2), W116-W120. https://doi.org/10.1093/nar/gki442
  • Rutter, W. J. (1964). Evolution of aldolase. Federation Proceeding, 23, 48-57.
  • Sarry, J. E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J. B., Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., & Bourguignon, J. (2006). The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 6(7), 2180-2198. https://doi.org/10.1002/pmic.200500543
  • Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., ... & Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707-713. https://doi.org/10.1038/ng.3008
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504. https://doi.org/10.1101/gr.1239303
  • Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. https://doi.org/10.3390/molecules24132452
  • Shu, S., Chen, L., Lu, W., Sun, J., Guo, S., Yuan, Y., & Li, J. (2014). Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. Journal of Plant Research, 127(6), 763-773. https://doi.org/10.1007/s10265-014-0653-z
  • Strand, Å., Zrenner, R., Trevanion, S., Stitt, M., Gustafsson, P., & Gardeström, P. (2000). Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose‐1, 6‐bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. The Plant Journal, 23(6), 759-770. https://doi.org/10.1046/j.1365-313x.2000.00847.x
  • Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34(suppl_2), W609-W612. https://doi.org/10.1093/nar/gkl315
  • Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312. https://doi.org/10.1016/j.sajb.2016.03.011
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  • Voorrips, R. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1), 77-78. https://doi.org/10.1093/jhered/93.1.77
  • Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., Lee, T.-ho, Jin. H., Marler, B., Guo, H., Kissinger, J. C., & Paterson, A. H. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7), e49-e49. https://doi.org/10.1093/nar/gkr1293
  • Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., & Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Frontiers in Plant Science, 10, 1336. https://doi.org/10.3389/fpls.2019.01336
  • Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Evolution, 42(1), 225-249.
  • Yamada, S., Komori, T., Hashimoto, A., Kuwata, S., Imaseki, H., & Kubo, T. (2000). Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Science, 154(1), 61-69. https://doi.org/10.1016/S0168-9452(00)00188-6
  • Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. https://doi.org/10.1093/molbev/msm088
  • Yeken, M. Z., Kantar, F., Çancı, H., Özer, G., & Çiftçi, V. (2018). Breeding of dry bean cultivars using Phaseolus vulgaris landraces in Turkey. International Journal of Agricultural and Wildlife Sciences, 4(1), 45-54. https://doi.org/10.24180/ijaws.408794
  • Zhao, W., Liu, H., Zhang, L., Hu, Z., Liu, J., Hua, W., Xu, S., & Liu, J. (2019). Genome-wide identification and characterization of FBA gene family in polyploid crop Brassica napus. International Journal of Molecular Sciences, 20, 5749. https://doi.org/10.3390/ijms20225749
There are 59 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Research Articles
Authors

Sümeyra Uçar 0000-0002-7629-0206

Şeyma Alım 0000-0001-6684-7974

Ayşe Gül Kasapoğlu 0000-0002-6447-4921

Esma Yigider 0000-0002-6896-0193

Emre İlhan 0000-0002-8404-7900

Murat Turan 0000-0003-2900-1755

Aysun Polat 0009-0001-3856-0324

Neslihan Dikbaş 0000-0001-9096-2761

Murat Aydın 0000-0003-1091-0609

Early Pub Date March 28, 2024
Publication Date March 31, 2024
Submission Date February 6, 2024
Acceptance Date March 1, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Uçar, S., Alım, Ş., Kasapoğlu, A. G., Yigider, E., et al. (2024). Genome-Wide Analysis and Characterization of FBA (Fructose 1,6-bisphosphate aldolase) Gene Family of Phaseolus vulgaris L. Journal of Agricultural Production, 5(1), 30-40. https://doi.org/10.56430/japro.1432135