Research Article
BibTex RIS Cite

The Effect of Plant Growth Promoting Bacteria Strains on Yield and Some Quality Parameters of Eggplant (Solanum melongena L.)

Year 2024, Volume: 5 Issue: 3, 153 - 162, 30.09.2024
https://doi.org/10.56430/japro.1477206

Abstract

This research was carried out under field conditions to determine the effect of PGPB on the yield and quality of Pulsar F1 eggplant variety under Igdir ecological conditions in 2021. The experiment was conducted with 8 treatments (Brevibacillus reuszeri strain IT 119, Kluyvera cyrocrescens strain IT 160, IT 119 + IT 160, IT 119 + Fertilizer, IT 160 + Fertilizer, IT 119 + IT 160 + Fertilizer, Fertilizer and Negative Control) with 3 replications according to the randomized block design. Bacterial strains were applied by inoculating 100 ml (106 cfu/ml) to the root zone of the plants during seedling stage. PGPB treatments increased total yield, discard yield, marketable yield, plant height, plant stem thickness, number of leaves, plant root wet weight, plant root dry weight, stem wet weight, stem dry weight, number of fruits per plant, fruit wet weight, fruit dry weight and root length compared to negative and positive control groups. The treatments had no effect on fruit diameter. Although both strains were found to be successful, especially Kluyvera cyrocrescens strain IT 160 alone and in combination showed positive effects in terms of the parameters examined in eggplant plants and has the potential to be used as biofertilizer.

Supporting Institution

Iğdır University Scientific Research Projects

Project Number

ZİF0322Y03.

Thanks

We would like to thank Iğdır University Scientific Research Projects for their contribution to the support of the project numbered ZİF0322Y03. This study is derived from the Master’s thesis titled "The Effect of Bacterial Strains (PGPB) Stimulating Plant Growth on Yield and Some Quality Parameters of Eggplant Plant (Solanum melongena L.)".

References

  • Allan, R. N., Lebbe, L., Heyrman, J., De Vos, P., Buchanan, C. J., & Logan, N. A. (2005). Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1039-1050. https://doi.org/10.1099/ijs.0.63397-0
  • Bartel, L. C., Abrahamovich, E., Mori, C., López, A. C., & Alippi, A. M. (2019). Bacillus and Brevibacillus strains as potential antagonists of Paenibacillus larvae and Ascosphaera apis. Journal of Apicultural Research, 58(1), 117-132. https://doi.org/10.1080/00218839.2018.1495439
  • Başer, M. (2015). Farklı lokasyonlarda dikim sıklığı ve budama uygulamalarının patlıcanda verim, kalite ve bitki gelişimine etkisi (Master’s thesis, Tokat Gaziosmanpaşa University). (In Turkish)
  • Bintas, P. A., Çığ, A., & Türkoğlu, N. (2020). Investigation of the effects of some bacterial isolates and fertilizer applications on nutrient contents of hyacinth. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 978-988. https://doi.org/10.15835/nbha48211911
  • Bintaş, P. A., Çığ, A., & Türkoğlu, N. (2021). Some phenological and morphological properties of Hyacinthus orıentalis cv. "delft blue" with treated bacterial inoculations. Polish Journal of Environmental Studies, 30(2), 1549-1556. https://doi.org/10.15244/pjoes/126484
  • Bisht, H., & Kumar, N. (2023). Characterization and evaluation of the nickel-removal capacity of Kluyvera cryocrescens M7 isolated from industrial wastes. Pollution, 9(3), 1059-1073. https://doi.org/10.22059/poll.2023.347580.1586
  • Burd, I. G., Dixon, D. G., & Glick, B. R. (2000). Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237-245. https://doi.org/10.1139/w99-143
  • Castro, C. M. D., Almeida, D. L. D., Ribeiro, R. D. L. D., & Carvalho, J. F. D. (2005). Plantio direto, adubação verde e suplementação com esterco de aves na produção orgânica de berinjela. Pesquisa Agropecuária Brasileira, 40, 495-502. https://doi.org/10.1590/S0100-204X2005000500011 (In Portuguese)
  • Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  • Consentino, B. B., Aprile, S., Rouphael, Y., Ntatsi, G., De Pasquale, C., Iapichino, G., Alibrandi, P., & Sabatino, L. (2022). Application of PGPB combined with variable n doses affects growth, yield-related traits, n-fertilizer efficiency and nutritional status of lettuce grown under controlled condition. Agronomy, 12(2), 236. https://doi.org/10.3390/agronomy12020236
  • Demir, Z. (2020). Effects of microbial bio-fertilizers on soil physicochemical properties under different soil water regimes in greenhouse grown eggplant (Solanum melongena L.). Communications in Soil Science and Plant Analysis, 51(14), 1888-1903. https://doi.org/10.1080/00103624.2020.1798983
  • Edwards, S. G., & Seddon, B. (2001). Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. Journal of Applied Microbiology, 91(4), 652-659. https://doi.org/10.1046/j.1365-2672.2001.01430.x
  • Emmanuel, O. C., & Babalola, O. O. (2020). Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research, 239, 126569. https://doi.org/10.1016/j.micres.2020.126569
  • Fategbe, M. A., Ibukun, E. O., Kade, I. J., & Rocha, J. B. T. (2013). A comparative study on ripe and unripe eggplant (Solanum melongena L.) as dietary antioxidant sources. Journal of Medicinal Plants Research, 7(6), 209-218.
  • Fathalla, A., & Sabry, S. (2020). Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing fluorescent Pseudomonas on the growth of eggplant under drought stress. Plant Archives, 20(1), 3389-3394.
  • Fu, Q., Liu, C., Ding, N., Lin, Y., & Guo, B. (2010). Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97(12), 1994-2000. https://doi.org/10.1016/j.agwat.2010.02.003
  • Grichko, V. P., Filby, B., & Glick, B. R. (2000). Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. Journal of Biotechnology, 81(1), 45-53. https://doi.org/10.1016/S0168-1656(00)00270-4
  • Guedes, V. H. F., Oliveira, D. M. A. O., Santos, R. L., Oliveira, G. A. A. O., & Oliveira, F. L. N. O. (2018). The effects of a biofertilizer containing growth promoting bacteria on the eggplant (Solanum melongena L.). Journal of Experimental Agriculture International, 26(6), 1-8. https://doi.org/10.9734/JEAI/2018/44045
  • Gupta, A., Kaushik, C. P., & Kaushik, A. (2000). Degradation of hexachlorocyclohexane (HCH; α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biology and Biochemistry, 32(11-12), 1803-1805. https://doi.org/10.1016/S0038-0717(00)00072-9
  • Gürkök, S., & Görmez, A. (2016). Isolation and characterization of novel chitinolytic bacteria. International Conference on Advances in Natural and Applied Sciences: Icanas 2016. Antalya.
  • Innerebner, G., Knief, C., & Vorholt, J. A. (2011). Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology, 77(10), 3202-3210. https://doi.org/10.1128/AEM.00133-11
  • Kanber, R. (1997). Sulama. Çukurova Üniversitesi Ziraat Fakültesi Yayını. (In Turkish)
  • Karlidag, H., Yildirim, E., Turan, M., & Donmez, M. F. (2009). Effect of plant growth-promoting bacteria on mineral-organic fertilizer use efficiency, plant growth and mineral contents of strawberry (Fragaria x ananassa L. Duch.). 14th International Conference on Organic Fruit-Growing. Hoffenheim.
  • Kassi, A. K., Javed, H., & Mukhtar, T. (2019). Screening of different aubergine cultivars against infestation of brinjal fruit and shoot borer (Leucinodes orbonalis Guenee). Pakistan Journal of Zoology, 51(2), 603-609. https://doi.org/10.17582/journal.pjz/2019.51.2.603.609
  • Kocayiğit, F. (2010). Bazı sebzelerin kurutma karakteristiklerinin incelenmesi (Master’s thesis, Yıldız Technical University). (In Turkish)
  • Külahlıoğlu, İ. (2016). Patlıcanda türler arası melezleme (Solanum melongena L. X Solanum torvum Sw.) engelinin aşılması üzerine araştırmalar (Master’s thesis, Mustafa Kemal University). (In Turkish)
  • Li, Q., Wu, X. Q., & Ye, J. R. (2015). Isolation and identification of a mycorrhiza helper bacteria (MHB) Brevibacillus reuszeri on Pinus massoniana roots. Scientia Silvae Sinicae, 51, 159-164.
  • López, S. M. Y., Pastorino, G. N., Malbran, I., & Balatti, P. A. (2019). Enterobacteria isolated from an agricultural soil of Argentina promote plant growth and biocontrol activity of plant pathogens. Revista de la Facultad de Agronomía, 118(2), 022. https://doi.org/10.24215/16699513e022
  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86, 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  • Nehra, V., Saharan, B. S., & Choudhary, M. (2016). Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus, 5, 1-10. https://doi.org/10.1186/s40064-016-2584-8
  • Özgen, T. (2019). Patlıcan (Solanum melongena L.) genotiplerinin Fusarium oxysporum f. sp. melongenae’ya dayanıklılık düzeylerinin ve kök yapılarının incelenmesi (Master’s thesis, Ondokuz Mayıs University). (In Turkish)
  • Parlakova Karagöz, F., Dursun, A., & Kotan, R. (2019). Effects of rhizobacteria on plant development, quality of flowering and bulb mineral contents in Hyacinthus orientalis L. Alinteri Journal of Agriculture Science, 34(1), 88-95. https://doi.org/10.28955/alinterizbd.585219
  • Parlakova Karagöz, F. (2020). Evaluation of the bacteria formulation different inoculum densities on growth and development of Euphorbia pulcherrima. Folia Horticulturae, 32(2), 179-188. https://doi.org/10.2478/fhort-2020-0017
  • Poveda, J., & Gonzalez-Andres, F. (2021). Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology, 105, 8629-8645. https://doi.org/10.1007/s00253-021-11492-8
  • Sano, K. I., & Anraku, A. (2018). Draft genome sequence of Brevibacillus reuszeri strain NIT02, isolated from a laundered rental cloth hot towel. Genome Announcements, 6(2), e01353-17. https://doi.org/10.1128/genomea.01353-17
  • Saputri, I. A., Hera, H. & Irfan, M. (2023). The effect of nutritan liquid fertilizer with different concentrations on growth and production of shallots (Allium ascalonicum L.). Seminar Nasional Integrasi Pertanian dan Peternakan, 1(1), 223-235.
  • Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583-1594. https://doi.org/10.1111/jam.14506
  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 1-14. https://doi.org/10.1186/2193-1801-2-587
  • Shi, J. W., Lu, L. X., Shi, H. M., & Ye, J. R. (2022). Effects of plant growth-promoting rhizobacteria on the growth and soil microbial community of Carya illinoinensis. Current Microbiology, 79, 352. https://doi.org/10.1007/s00284-022-03027-9
  • Shipoh, P. M. (2021). Isolation, identification and characterization of Cleome gynandra L. bacterial seed endophytes from Northern Namibia (Master thesis, Namibia University).
  • Söğüt, S., & Çığ, F. (2019). Determination of the effect of plant growth promoting bacteria on wheat (Triticum aestivum L.) development under salinity stress conditions. Applied Ecology & Environmental Research, 17(1), 1129-1141. https://doi.org/10.15666/aeer/1701_11291141
  • Song, Q., Song, X., Deng, X., Luo, J., Wang, J., Min, K., & Song, R. (2021). Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scandinavian Journal of Forest Research, 36(4), 249-262. https://doi.org/10.1080/02827581.2021.1917649
  • Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401-419. https://doi.org/10.1590/s1415-475738420150053
  • Temel, I. (2023). Farklı kaynaklardan izole edilen bakteri strainlerinin Acidovorax citrulli’nin biyokontrolündeki rolü ile kavun (Cucumis melo L.) bitkisinde verim ve kaliteye etkileri (Doctoral dissertation, Iğdır University). (In Turkish)
  • Trabelsi, D., & Mhamdi, R. (2013). Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International, 2013(1), 863240. https://doi.org/10.1155/2013/863240
  • TÜİK. (2019). Bitkisel üretim istatistikleri. Retrieved Jan 12, 2019, from https://tuikweb.tuik.gov.tr/UstMenu (In Turkish)
  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460-468. https://doi.org/10.1007/s003740050024
  • Vinent, S., Diaz, M., Delgedo, E., Barbosa, H., & Raton, T. (2014). Efectos de Brevibacillus bortelensis B65 sobre la germinacion y el desarrollo de posturas de hortalizas en fase semillero. Cultivos Tropicales, 35(3), 17-23. (In Spanish)
  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(1), 487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  • Yücel, Y. C. (2020). Farklı patlıcan (Solanum melongena L.) genotiplerin azot etkinlik bakımından agronomik, fizyolojik ve morfolojik karakterizasyonu ve anaçlık potansiyellerinin belirlenmesi (Master’s thesis, Erciyes University). (In Turkish)
Year 2024, Volume: 5 Issue: 3, 153 - 162, 30.09.2024
https://doi.org/10.56430/japro.1477206

Abstract

Project Number

ZİF0322Y03.

References

  • Allan, R. N., Lebbe, L., Heyrman, J., De Vos, P., Buchanan, C. J., & Logan, N. A. (2005). Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1039-1050. https://doi.org/10.1099/ijs.0.63397-0
  • Bartel, L. C., Abrahamovich, E., Mori, C., López, A. C., & Alippi, A. M. (2019). Bacillus and Brevibacillus strains as potential antagonists of Paenibacillus larvae and Ascosphaera apis. Journal of Apicultural Research, 58(1), 117-132. https://doi.org/10.1080/00218839.2018.1495439
  • Başer, M. (2015). Farklı lokasyonlarda dikim sıklığı ve budama uygulamalarının patlıcanda verim, kalite ve bitki gelişimine etkisi (Master’s thesis, Tokat Gaziosmanpaşa University). (In Turkish)
  • Bintas, P. A., Çığ, A., & Türkoğlu, N. (2020). Investigation of the effects of some bacterial isolates and fertilizer applications on nutrient contents of hyacinth. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 978-988. https://doi.org/10.15835/nbha48211911
  • Bintaş, P. A., Çığ, A., & Türkoğlu, N. (2021). Some phenological and morphological properties of Hyacinthus orıentalis cv. "delft blue" with treated bacterial inoculations. Polish Journal of Environmental Studies, 30(2), 1549-1556. https://doi.org/10.15244/pjoes/126484
  • Bisht, H., & Kumar, N. (2023). Characterization and evaluation of the nickel-removal capacity of Kluyvera cryocrescens M7 isolated from industrial wastes. Pollution, 9(3), 1059-1073. https://doi.org/10.22059/poll.2023.347580.1586
  • Burd, I. G., Dixon, D. G., & Glick, B. R. (2000). Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237-245. https://doi.org/10.1139/w99-143
  • Castro, C. M. D., Almeida, D. L. D., Ribeiro, R. D. L. D., & Carvalho, J. F. D. (2005). Plantio direto, adubação verde e suplementação com esterco de aves na produção orgânica de berinjela. Pesquisa Agropecuária Brasileira, 40, 495-502. https://doi.org/10.1590/S0100-204X2005000500011 (In Portuguese)
  • Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  • Consentino, B. B., Aprile, S., Rouphael, Y., Ntatsi, G., De Pasquale, C., Iapichino, G., Alibrandi, P., & Sabatino, L. (2022). Application of PGPB combined with variable n doses affects growth, yield-related traits, n-fertilizer efficiency and nutritional status of lettuce grown under controlled condition. Agronomy, 12(2), 236. https://doi.org/10.3390/agronomy12020236
  • Demir, Z. (2020). Effects of microbial bio-fertilizers on soil physicochemical properties under different soil water regimes in greenhouse grown eggplant (Solanum melongena L.). Communications in Soil Science and Plant Analysis, 51(14), 1888-1903. https://doi.org/10.1080/00103624.2020.1798983
  • Edwards, S. G., & Seddon, B. (2001). Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. Journal of Applied Microbiology, 91(4), 652-659. https://doi.org/10.1046/j.1365-2672.2001.01430.x
  • Emmanuel, O. C., & Babalola, O. O. (2020). Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research, 239, 126569. https://doi.org/10.1016/j.micres.2020.126569
  • Fategbe, M. A., Ibukun, E. O., Kade, I. J., & Rocha, J. B. T. (2013). A comparative study on ripe and unripe eggplant (Solanum melongena L.) as dietary antioxidant sources. Journal of Medicinal Plants Research, 7(6), 209-218.
  • Fathalla, A., & Sabry, S. (2020). Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing fluorescent Pseudomonas on the growth of eggplant under drought stress. Plant Archives, 20(1), 3389-3394.
  • Fu, Q., Liu, C., Ding, N., Lin, Y., & Guo, B. (2010). Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agricultural Water Management, 97(12), 1994-2000. https://doi.org/10.1016/j.agwat.2010.02.003
  • Grichko, V. P., Filby, B., & Glick, B. R. (2000). Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. Journal of Biotechnology, 81(1), 45-53. https://doi.org/10.1016/S0168-1656(00)00270-4
  • Guedes, V. H. F., Oliveira, D. M. A. O., Santos, R. L., Oliveira, G. A. A. O., & Oliveira, F. L. N. O. (2018). The effects of a biofertilizer containing growth promoting bacteria on the eggplant (Solanum melongena L.). Journal of Experimental Agriculture International, 26(6), 1-8. https://doi.org/10.9734/JEAI/2018/44045
  • Gupta, A., Kaushik, C. P., & Kaushik, A. (2000). Degradation of hexachlorocyclohexane (HCH; α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biology and Biochemistry, 32(11-12), 1803-1805. https://doi.org/10.1016/S0038-0717(00)00072-9
  • Gürkök, S., & Görmez, A. (2016). Isolation and characterization of novel chitinolytic bacteria. International Conference on Advances in Natural and Applied Sciences: Icanas 2016. Antalya.
  • Innerebner, G., Knief, C., & Vorholt, J. A. (2011). Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Applied and Environmental Microbiology, 77(10), 3202-3210. https://doi.org/10.1128/AEM.00133-11
  • Kanber, R. (1997). Sulama. Çukurova Üniversitesi Ziraat Fakültesi Yayını. (In Turkish)
  • Karlidag, H., Yildirim, E., Turan, M., & Donmez, M. F. (2009). Effect of plant growth-promoting bacteria on mineral-organic fertilizer use efficiency, plant growth and mineral contents of strawberry (Fragaria x ananassa L. Duch.). 14th International Conference on Organic Fruit-Growing. Hoffenheim.
  • Kassi, A. K., Javed, H., & Mukhtar, T. (2019). Screening of different aubergine cultivars against infestation of brinjal fruit and shoot borer (Leucinodes orbonalis Guenee). Pakistan Journal of Zoology, 51(2), 603-609. https://doi.org/10.17582/journal.pjz/2019.51.2.603.609
  • Kocayiğit, F. (2010). Bazı sebzelerin kurutma karakteristiklerinin incelenmesi (Master’s thesis, Yıldız Technical University). (In Turkish)
  • Külahlıoğlu, İ. (2016). Patlıcanda türler arası melezleme (Solanum melongena L. X Solanum torvum Sw.) engelinin aşılması üzerine araştırmalar (Master’s thesis, Mustafa Kemal University). (In Turkish)
  • Li, Q., Wu, X. Q., & Ye, J. R. (2015). Isolation and identification of a mycorrhiza helper bacteria (MHB) Brevibacillus reuszeri on Pinus massoniana roots. Scientia Silvae Sinicae, 51, 159-164.
  • López, S. M. Y., Pastorino, G. N., Malbran, I., & Balatti, P. A. (2019). Enterobacteria isolated from an agricultural soil of Argentina promote plant growth and biocontrol activity of plant pathogens. Revista de la Facultad de Agronomía, 118(2), 022. https://doi.org/10.24215/16699513e022
  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek, 86, 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  • Nehra, V., Saharan, B. S., & Choudhary, M. (2016). Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus, 5, 1-10. https://doi.org/10.1186/s40064-016-2584-8
  • Özgen, T. (2019). Patlıcan (Solanum melongena L.) genotiplerinin Fusarium oxysporum f. sp. melongenae’ya dayanıklılık düzeylerinin ve kök yapılarının incelenmesi (Master’s thesis, Ondokuz Mayıs University). (In Turkish)
  • Parlakova Karagöz, F., Dursun, A., & Kotan, R. (2019). Effects of rhizobacteria on plant development, quality of flowering and bulb mineral contents in Hyacinthus orientalis L. Alinteri Journal of Agriculture Science, 34(1), 88-95. https://doi.org/10.28955/alinterizbd.585219
  • Parlakova Karagöz, F. (2020). Evaluation of the bacteria formulation different inoculum densities on growth and development of Euphorbia pulcherrima. Folia Horticulturae, 32(2), 179-188. https://doi.org/10.2478/fhort-2020-0017
  • Poveda, J., & Gonzalez-Andres, F. (2021). Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology, 105, 8629-8645. https://doi.org/10.1007/s00253-021-11492-8
  • Sano, K. I., & Anraku, A. (2018). Draft genome sequence of Brevibacillus reuszeri strain NIT02, isolated from a laundered rental cloth hot towel. Genome Announcements, 6(2), e01353-17. https://doi.org/10.1128/genomea.01353-17
  • Saputri, I. A., Hera, H. & Irfan, M. (2023). The effect of nutritan liquid fertilizer with different concentrations on growth and production of shallots (Allium ascalonicum L.). Seminar Nasional Integrasi Pertanian dan Peternakan, 1(1), 223-235.
  • Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583-1594. https://doi.org/10.1111/jam.14506
  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 1-14. https://doi.org/10.1186/2193-1801-2-587
  • Shi, J. W., Lu, L. X., Shi, H. M., & Ye, J. R. (2022). Effects of plant growth-promoting rhizobacteria on the growth and soil microbial community of Carya illinoinensis. Current Microbiology, 79, 352. https://doi.org/10.1007/s00284-022-03027-9
  • Shipoh, P. M. (2021). Isolation, identification and characterization of Cleome gynandra L. bacterial seed endophytes from Northern Namibia (Master thesis, Namibia University).
  • Söğüt, S., & Çığ, F. (2019). Determination of the effect of plant growth promoting bacteria on wheat (Triticum aestivum L.) development under salinity stress conditions. Applied Ecology & Environmental Research, 17(1), 1129-1141. https://doi.org/10.15666/aeer/1701_11291141
  • Song, Q., Song, X., Deng, X., Luo, J., Wang, J., Min, K., & Song, R. (2021). Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings. Scandinavian Journal of Forest Research, 36(4), 249-262. https://doi.org/10.1080/02827581.2021.1917649
  • Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401-419. https://doi.org/10.1590/s1415-475738420150053
  • Temel, I. (2023). Farklı kaynaklardan izole edilen bakteri strainlerinin Acidovorax citrulli’nin biyokontrolündeki rolü ile kavun (Cucumis melo L.) bitkisinde verim ve kaliteye etkileri (Doctoral dissertation, Iğdır University). (In Turkish)
  • Trabelsi, D., & Mhamdi, R. (2013). Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International, 2013(1), 863240. https://doi.org/10.1155/2013/863240
  • TÜİK. (2019). Bitkisel üretim istatistikleri. Retrieved Jan 12, 2019, from https://tuikweb.tuik.gov.tr/UstMenu (In Turkish)
  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortes, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils, 30, 460-468. https://doi.org/10.1007/s003740050024
  • Vinent, S., Diaz, M., Delgedo, E., Barbosa, H., & Raton, T. (2014). Efectos de Brevibacillus bortelensis B65 sobre la germinacion y el desarrollo de posturas de hortalizas en fase semillero. Cultivos Tropicales, 35(3), 17-23. (In Spanish)
  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(1), 487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  • Yücel, Y. C. (2020). Farklı patlıcan (Solanum melongena L.) genotiplerin azot etkinlik bakımından agronomik, fizyolojik ve morfolojik karakterizasyonu ve anaçlık potansiyellerinin belirlenmesi (Master’s thesis, Erciyes University). (In Turkish)
There are 50 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Articles
Authors

Meltem Aydin 0009-0001-3666-9561

Mesude Figen Dönmez 0000-0002-7992-8252

Project Number ZİF0322Y03.
Publication Date September 30, 2024
Submission Date May 2, 2024
Acceptance Date June 28, 2024
Published in Issue Year 2024 Volume: 5 Issue: 3

Cite

APA Aydin, M., & Dönmez, M. F. (2024). The Effect of Plant Growth Promoting Bacteria Strains on Yield and Some Quality Parameters of Eggplant (Solanum melongena L.). Journal of Agricultural Production, 5(3), 153-162. https://doi.org/10.56430/japro.1477206