Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 3, 148 - 156, 30.09.2025
https://doi.org/10.56430/japro.1746259

Abstract

References

  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
  • Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 555-560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7
  • Akınoğlu, G., Kiremit, M. S., & Rakıcıoğlu, S. (2025). Exploring the potential of iodine in mitigating salinity stress: Effects on yield, physio-biochemical traits, and fruit quality of sweet pepper (Capsicum annuum L.). Journal of Crop Health, 77, 86. https://doi.org/10.1007/s10343-025-01152-6
  • Ali, R. T., Ahmed, O. K., Abdel-Samie, N. S., & Yousef, R. S. (2024). The salinity impact on changes in some metabolites and some vital subcellular organelles in white maize. Discover Agriculture, 2, 31. https://doi.org/10.1007/s44279-024-00041-2
  • Angelini, R., & Federico, R. (1989). Histochemical evidence of polyamine oxidation and generation of hydrogen- peroxide in the cell Wall. Journal of Plant Physiology, 135(2), 212-217. https://doi.org/10.1016/S0176-1617(89)80179-8
  • Angelini, R., Manes, F., & Federico, R. (1990). Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea. Planta, 182(1), 89-96. https://doi.org/10.1007/bf00239989
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Ashraf, M., & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora-Morphology, Distribution, Functional Ecology of Plants, 198(6), 486-498. https://doi.org/10.1078/0367-2530-00121
  • Ashraf, M., & Harris, P. J. C. (2005). Abiotic stresses: Plant resistance through breeding and molecular approaches. CRC Press. https://doi.org/10.1201/9781482293609
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Barillari, J., Canistro, D., Paolini, M., Ferroni, F., Pedulli, G. F., Iori, R., & Valgimigli, L. (2005). Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. Journal of Agricultural and Food Chemistry, 53(7), 2475-2482. https://doi.org/10.1021/jf047945a
  • Barlas, N. T., Irget, M. E., & Tepecik, M. (2011). Mineral content of the rocket plant (Eruca sativa). African Journal of Biotechnology, 10(64), 14080-14082. https://doi.org/10.5897/AJB11.2171
  • Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Blasco, B., Rios, J. J., Cervilla, L. M., Sánchez‐Rodrigez, E., Ruiz, J. M., & Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Annals of Applied Biology, 152(3), 289-299. https://doi.org/10.1111/j.1744-7348.2008.00217.x
  • Chopra J., Kaur N., & Gupta A. K. (2000). Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 53(5), 539-548. https://doi.org/10.1016/s0031-9422(99)00545-2
  • Çirka, M., Tunçtürk, R., Kulaz, H., & Tunçtürk, M. (2022). Effects of salt stress on some growth parameters and biochemical changes in bean (Phaseolus vulgaris L.). Acta Scientiarum Polonorum Hortorum Cultus, 21(3), 53-63. http://doi.org/10.24326/asphc.2022.3.5
  • Dávila-Rangel, I. E., Leija-Martínez, P., Medrano-Macías, J., Fuentes-Lara, L. O., González-Morales, S., Juárez-Maldonado, A., & Benavides-Mendoza, A. (2019). Iodine biofortification of crops. In P. K. Jaiwal, A. K. Chhillar, D. Chaudhary & R. Jaiwal (Eds.), Nutritional quality improvement in plants (pp. 79-113). Springer. https://doi.org/10.1007/978-3-319-95354-0_4
  • Dey, G., & Mukherjee, R. K. (1984). Iodine treatment of soybean and sunflower seeds for controlling deterioration. Field Crops Research, 9, 205-213. https://doi.org/10.1016/0378-4290(84)90026-1
  • Eşiyok, D. (2012). Kışlık ve yazlık sebze yetiştiriciliği. Sidas Yayınları. (In Turkish)
  • Fuentes, J. E. G., Castellanos, B. F. H., Martínez, E. N. R., Ortiz, W. A. N., Mendoza, A. B., & Macías, J. M. (2022). Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Horticulturae, 34(1), 27-37. https://doi.org/10.2478/fhort-2022-0003
  • Gong, Y., Toivonen, P. M., Wiersma, P. A., Lu, C., & Lau, O. L. (2000). Effect of freezing on the activity of catalase in apple flesh tissue. Journal of Agricultural and Food Chemistry, 48(11), 5537-5542. https://doi.org/10.1021/jf990525e
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. Azooz & M. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25-87). Springer. https://doi.org/10.1007/978-1-4614-4747-4_2
  • Hniličková, H., Hnilička, F., Martinkova, J., & Kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environment, 63(8), 362-367. https://doi.org/10.17221/398/2017-PSE
  • Hu, Y., & Schmidhalter, U. (2004). Limitation of salt stress to plant growth. In B. Hock & E. F. Elstner (Eds.), Plant toxicology (pp. 205-238). CRC Press. https://doi.org/10.1201/9780203023884
  • Jesus, C. G., Silva, F. J., Camara, T. R., Silva, Ê. F., & Willadino, L. (2015). Production of rocket under salt stress in hydroponic systems. Horticultura Brasileira, 33(4), 493-497. https://doi.org/10.1590/S0102-053620150000400014
  • Kalefetoğlu, T., & Ekmekci, Y. (2005). Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizmaları. Gazi University Journal of Science, 18(4), 723-740. (In Turkish)
  • Kaya, G. (2021). Germination, stomatal and physiological response of rocket (Eruca sativa L,) to salinity. Acta Scientiarum Polonorum Hortorum Cultus, 20(4), 135-144. https://doi.org/10.24326/asphc.2021.4.12
  • Kiferle, C., Martinelli, M., Salzano, A. M., Gonzali, S., Beltrami, S., Salvadori, P. A., Hora, K., Holwerda, H. J., Scaloni, A., & Perata, P. (2021). Evidences for a nutritional role of iodine in plants. Frontiers in Plant Science, 12, 616868. https://doi.org/10.3389/fpls.2021.616868
  • Läuchli, A., & Grattan, S. R. (2007). Plant growth and development under salinity stress. In M. A. Jenks, P. M. Hasegawa & S. M. Jain (Eds.), Advances in molecular breeding toward drought and salt tolerant crops (pp. 1-32). Springer. https://doi.org/10.1007/978-1-4020-5578-2_1
  • Levitt, J. (1990). Stress interactions-back to the future. HortScience, 25(11), 1363-1365. https://doi.org/10.21273/HORTSCI.25.11.1363
  • Leyva, R., Sánchez-Rodríguez, E., Ríos, J. J., Rubio-Wilhelmi, M. M., Romero, L., Ruiz, J. M., & Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 181(2), 195-202. https://doi.org/10.1016/j.plantsci.2011.05.007
  • Lichtenthaler, H. K., & Buschmann, C. (2001). Extraction of phtosynthetic tissues: Chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1(1), F4.2.1-F4.2.6. https://doi.org/10.1002/0471142913.faf0402s01
  • Medrano-Macías, J., Leija-Martínez, P., González-Morales, S., Juárez-Maldonado, A., & Benavides-Mendoza, A. (2016). Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science, 7, 1146. https://doi.org/10.3389/fpls.2016.01146
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Munns, R., Guo, J., Passioura, J. B., & Cramer, G. R. (2000). Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Functional Plant Biology, 27(10), 949-957. https://doi.org/10.1071/PP99193
  • Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology, 8(3), 81-91. https://doi.org/10.7324/JABB.2020.80315
  • Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., & Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(1), 88-97. https://doi.org/10.1080/11263504.2018.1461701
  • Riyazuddin, R., Singh, K., Iqbal, N., Nisha, N., Rani, A., Kumar, M., Khatri, N., Siddiqui, M. H., Kim, S. T., Atilla, F., & Gupta, R. (2023). Iodine: An emerging biostimulant of growth and stress responses in plants. Plant and Soil, 486, 119-133. https://doi.org/10.1007/s11104-022-05750-5
  • Rus, A. M., Estan, M. T., Gisbert, C., Garcia‐Sogo, B., Serrano, R., Caro, M., Moreno, V., & Bolarin, M. C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant, Cell & Environment, 24(8), 875-880. https://doi.org/10.1046/j.1365-3040.2001.00719.x
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196-204. https://doi.org/10.1016/j.scienta.2018.06.016
  • Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., De Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., & Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50(Special_Issue), 1023-1036. https://doi.org/10.1093/jxb/50.Special_Issue.1023
  • Shalaby, O. A. (2025). Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants. Functional Plant Biology, 52(6). https://doi.org/10.1071/fp24273
  • Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R., & Yildirim, E. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25(5), 1149-1161. https://doi.org/10.1007/s12298-019-00692-2
  • Shariatinia, F., Azari, A., Rahimi, A., Panahi, B., & Madahhosseini, S. (2021). Germination, growth, and yield of rocket populations show strong ecotypic variation under NaCl stress. Scientia Horticulturae, 278, 109841. https://doi.org/10.1016/j.scienta.2020.109841
  • Sodaeizade, H., Jafarian, S., Mosleh Arani, A., Hakimzade, M. A., & Sohrabizadeh, Z. (2020). The effect of iodine on increasing drought tolerance of (Carthamus Tinctorius L.) in seed germination and early growth stage. Journal of Environmental Science Studies, 5(1), 2387-2393.
  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür sebzeleri (sebze yetiştirme). Ege Üniversitesi Basımevi. (In Turkish)
  • Ye, Y., Tam, N. F. Y., Wong, Y. S., & Lu, C. Y. (2003). Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany, 49(3), 209-221. https://doi.org/10.1016/S0098-8472(02)00071-0
  • Yordanova, R. Y., Christov, K. N., & Popova, L. P. (2004). Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51(2), 93-101. https://doi.org/10.1016/S0098-8472(03)00063-7
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. https://doi.org/10.1016/s1360-1385(00)01838-0

The Effect of Iodine on Rocket (Eruca sativa L.) Plant Under Salt Stress

Year 2025, Volume: 6 Issue: 3, 148 - 156, 30.09.2025
https://doi.org/10.56430/japro.1746259

Abstract

The main objective of this study was to investigate how iodine biofortification (potassium iodate (KIO3)) applied to rocket affects the physiological and biochemical responses of the plant under salt stress. Rocket (Eruca sativa L.) seeds were used as material and the applications were started when the seeds germinated and the plants had 2-3 leaves. 50 (T1) and 100 (T2) µM KIO3 applications were applied to the leaves of the plants by spraying and also by irrigation to the soil. Salt stress was applied by applying water prepared with 100 mM NaCl to the plant as irrigation from the soil. The effects of the applications on some plant morphological and physiological properties were investigated. In the study, salinity significantly reduced plant growth and development in rocket. Iodine application alleviated this damage and supported growth in rocket against salt stress. The plant height, stem diameter, leaf number and leaf area decreased by 29%, 27%, 22% and 56%, respectively, under salt stress, while iodine applications reduced this decrease. Electrical conductivity (EC) increased with salinity, while leaf water relative content (LRWC) decreased in rocket. This effect of salt was low in iodine application. Plant fresh weight, root fresh weight, plant dry weight and root dry weight decreased by 55%, 13%, 20% and 10% in the control group with salinity, and iodine application mitigated this decrease. The chlorophyll content, root fresh and dry weight of plants, especially those under salt stress, increased with iodine application. Hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, sucrose and antioxidant enzyme activities, which increased with salinity, also increased with iodine application. Iodine supports plant development and is also effective in salt stress tolerance of rocket plants.

Ethical Statement

This study does not require ethical committee approval.

Thanks

This study includes the results of Hande Dizkara’s Master's Thesis.

References

  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
  • Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 555-560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7
  • Akınoğlu, G., Kiremit, M. S., & Rakıcıoğlu, S. (2025). Exploring the potential of iodine in mitigating salinity stress: Effects on yield, physio-biochemical traits, and fruit quality of sweet pepper (Capsicum annuum L.). Journal of Crop Health, 77, 86. https://doi.org/10.1007/s10343-025-01152-6
  • Ali, R. T., Ahmed, O. K., Abdel-Samie, N. S., & Yousef, R. S. (2024). The salinity impact on changes in some metabolites and some vital subcellular organelles in white maize. Discover Agriculture, 2, 31. https://doi.org/10.1007/s44279-024-00041-2
  • Angelini, R., & Federico, R. (1989). Histochemical evidence of polyamine oxidation and generation of hydrogen- peroxide in the cell Wall. Journal of Plant Physiology, 135(2), 212-217. https://doi.org/10.1016/S0176-1617(89)80179-8
  • Angelini, R., Manes, F., & Federico, R. (1990). Spatial and functional correlation between diamine-oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea. Planta, 182(1), 89-96. https://doi.org/10.1007/bf00239989
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Ashraf, M., & Bashir, A. (2003). Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora-Morphology, Distribution, Functional Ecology of Plants, 198(6), 486-498. https://doi.org/10.1078/0367-2530-00121
  • Ashraf, M., & Harris, P. J. C. (2005). Abiotic stresses: Plant resistance through breeding and molecular approaches. CRC Press. https://doi.org/10.1201/9781482293609
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Barillari, J., Canistro, D., Paolini, M., Ferroni, F., Pedulli, G. F., Iori, R., & Valgimigli, L. (2005). Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. Journal of Agricultural and Food Chemistry, 53(7), 2475-2482. https://doi.org/10.1021/jf047945a
  • Barlas, N. T., Irget, M. E., & Tepecik, M. (2011). Mineral content of the rocket plant (Eruca sativa). African Journal of Biotechnology, 10(64), 14080-14082. https://doi.org/10.5897/AJB11.2171
  • Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
  • Blasco, B., Rios, J. J., Cervilla, L. M., Sánchez‐Rodrigez, E., Ruiz, J. M., & Romero, L. (2008). Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Annals of Applied Biology, 152(3), 289-299. https://doi.org/10.1111/j.1744-7348.2008.00217.x
  • Chopra J., Kaur N., & Gupta A. K. (2000). Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 53(5), 539-548. https://doi.org/10.1016/s0031-9422(99)00545-2
  • Çirka, M., Tunçtürk, R., Kulaz, H., & Tunçtürk, M. (2022). Effects of salt stress on some growth parameters and biochemical changes in bean (Phaseolus vulgaris L.). Acta Scientiarum Polonorum Hortorum Cultus, 21(3), 53-63. http://doi.org/10.24326/asphc.2022.3.5
  • Dávila-Rangel, I. E., Leija-Martínez, P., Medrano-Macías, J., Fuentes-Lara, L. O., González-Morales, S., Juárez-Maldonado, A., & Benavides-Mendoza, A. (2019). Iodine biofortification of crops. In P. K. Jaiwal, A. K. Chhillar, D. Chaudhary & R. Jaiwal (Eds.), Nutritional quality improvement in plants (pp. 79-113). Springer. https://doi.org/10.1007/978-3-319-95354-0_4
  • Dey, G., & Mukherjee, R. K. (1984). Iodine treatment of soybean and sunflower seeds for controlling deterioration. Field Crops Research, 9, 205-213. https://doi.org/10.1016/0378-4290(84)90026-1
  • Eşiyok, D. (2012). Kışlık ve yazlık sebze yetiştiriciliği. Sidas Yayınları. (In Turkish)
  • Fuentes, J. E. G., Castellanos, B. F. H., Martínez, E. N. R., Ortiz, W. A. N., Mendoza, A. B., & Macías, J. M. (2022). Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Horticulturae, 34(1), 27-37. https://doi.org/10.2478/fhort-2022-0003
  • Gong, Y., Toivonen, P. M., Wiersma, P. A., Lu, C., & Lau, O. L. (2000). Effect of freezing on the activity of catalase in apple flesh tissue. Journal of Agricultural and Food Chemistry, 48(11), 5537-5542. https://doi.org/10.1021/jf990525e
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. Azooz & M. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25-87). Springer. https://doi.org/10.1007/978-1-4614-4747-4_2
  • Hniličková, H., Hnilička, F., Martinkova, J., & Kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environment, 63(8), 362-367. https://doi.org/10.17221/398/2017-PSE
  • Hu, Y., & Schmidhalter, U. (2004). Limitation of salt stress to plant growth. In B. Hock & E. F. Elstner (Eds.), Plant toxicology (pp. 205-238). CRC Press. https://doi.org/10.1201/9780203023884
  • Jesus, C. G., Silva, F. J., Camara, T. R., Silva, Ê. F., & Willadino, L. (2015). Production of rocket under salt stress in hydroponic systems. Horticultura Brasileira, 33(4), 493-497. https://doi.org/10.1590/S0102-053620150000400014
  • Kalefetoğlu, T., & Ekmekci, Y. (2005). Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizmaları. Gazi University Journal of Science, 18(4), 723-740. (In Turkish)
  • Kaya, G. (2021). Germination, stomatal and physiological response of rocket (Eruca sativa L,) to salinity. Acta Scientiarum Polonorum Hortorum Cultus, 20(4), 135-144. https://doi.org/10.24326/asphc.2021.4.12
  • Kiferle, C., Martinelli, M., Salzano, A. M., Gonzali, S., Beltrami, S., Salvadori, P. A., Hora, K., Holwerda, H. J., Scaloni, A., & Perata, P. (2021). Evidences for a nutritional role of iodine in plants. Frontiers in Plant Science, 12, 616868. https://doi.org/10.3389/fpls.2021.616868
  • Läuchli, A., & Grattan, S. R. (2007). Plant growth and development under salinity stress. In M. A. Jenks, P. M. Hasegawa & S. M. Jain (Eds.), Advances in molecular breeding toward drought and salt tolerant crops (pp. 1-32). Springer. https://doi.org/10.1007/978-1-4020-5578-2_1
  • Levitt, J. (1990). Stress interactions-back to the future. HortScience, 25(11), 1363-1365. https://doi.org/10.21273/HORTSCI.25.11.1363
  • Leyva, R., Sánchez-Rodríguez, E., Ríos, J. J., Rubio-Wilhelmi, M. M., Romero, L., Ruiz, J. M., & Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 181(2), 195-202. https://doi.org/10.1016/j.plantsci.2011.05.007
  • Lichtenthaler, H. K., & Buschmann, C. (2001). Extraction of phtosynthetic tissues: Chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, 1(1), F4.2.1-F4.2.6. https://doi.org/10.1002/0471142913.faf0402s01
  • Medrano-Macías, J., Leija-Martínez, P., González-Morales, S., Juárez-Maldonado, A., & Benavides-Mendoza, A. (2016). Use of iodine to biofortify and promote growth and stress tolerance in crops. Frontiers in Plant Science, 7, 1146. https://doi.org/10.3389/fpls.2016.01146
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Munns, R., Guo, J., Passioura, J. B., & Cramer, G. R. (2000). Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Functional Plant Biology, 27(10), 949-957. https://doi.org/10.1071/PP99193
  • Mushtaq, Z., Faizan, S., & Gulzar, B. (2020). Salt stress, its impacts on plants and the strategies plants are employing against it: A review. Journal of Applied Biology and Biotechnology, 8(3), 81-91. https://doi.org/10.7324/JABB.2020.80315
  • Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., & Abdelly, C. (2019). Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 153(1), 88-97. https://doi.org/10.1080/11263504.2018.1461701
  • Riyazuddin, R., Singh, K., Iqbal, N., Nisha, N., Rani, A., Kumar, M., Khatri, N., Siddiqui, M. H., Kim, S. T., Atilla, F., & Gupta, R. (2023). Iodine: An emerging biostimulant of growth and stress responses in plants. Plant and Soil, 486, 119-133. https://doi.org/10.1007/s11104-022-05750-5
  • Rus, A. M., Estan, M. T., Gisbert, C., Garcia‐Sogo, B., Serrano, R., Caro, M., Moreno, V., & Bolarin, M. C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant, Cell & Environment, 24(8), 875-880. https://doi.org/10.1046/j.1365-3040.2001.00719.x
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., & Yildirim, E. (2018). Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196-204. https://doi.org/10.1016/j.scienta.2018.06.016
  • Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., De Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., & Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50(Special_Issue), 1023-1036. https://doi.org/10.1093/jxb/50.Special_Issue.1023
  • Shalaby, O. A. (2025). Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants. Functional Plant Biology, 52(6). https://doi.org/10.1071/fp24273
  • Shams, M., Ekinci, M., Ors, S., Turan, M., Agar, G., Kul, R., & Yildirim, E. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants, 25(5), 1149-1161. https://doi.org/10.1007/s12298-019-00692-2
  • Shariatinia, F., Azari, A., Rahimi, A., Panahi, B., & Madahhosseini, S. (2021). Germination, growth, and yield of rocket populations show strong ecotypic variation under NaCl stress. Scientia Horticulturae, 278, 109841. https://doi.org/10.1016/j.scienta.2020.109841
  • Sodaeizade, H., Jafarian, S., Mosleh Arani, A., Hakimzade, M. A., & Sohrabizadeh, Z. (2020). The effect of iodine on increasing drought tolerance of (Carthamus Tinctorius L.) in seed germination and early growth stage. Journal of Environmental Science Studies, 5(1), 2387-2393.
  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür sebzeleri (sebze yetiştirme). Ege Üniversitesi Basımevi. (In Turkish)
  • Ye, Y., Tam, N. F. Y., Wong, Y. S., & Lu, C. Y. (2003). Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany, 49(3), 209-221. https://doi.org/10.1016/S0098-8472(02)00071-0
  • Yordanova, R. Y., Christov, K. N., & Popova, L. P. (2004). Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51(2), 93-101. https://doi.org/10.1016/S0098-8472(03)00063-7
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. https://doi.org/10.1016/s1360-1385(00)01838-0
There are 51 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Hande Dizkara 0009-0004-9765-9502

Ertan Yıldırım 0000-0003-3369-0645

Melek Ekinci 0000-0002-7604-3803

Publication Date September 30, 2025
Submission Date July 19, 2025
Acceptance Date August 11, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Dizkara, H., Yıldırım, E., & Ekinci, M. (2025). The Effect of Iodine on Rocket (Eruca sativa L.) Plant Under Salt Stress. Journal of Agricultural Production, 6(3), 148-156. https://doi.org/10.56430/japro.1746259