Research Article
BibTex RIS Cite

Use of Orange Peel Waste in Removal of Nickel(II) Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies

Year 2022, , 322 - 339, 23.06.2022
https://doi.org/10.28979/jarnas.1000133

Abstract

− This study describes the evaluation of orange peel waste (PKA) for the removal of Ni(II) ions
from aqueous solutions. The effects of different parameters such as pH, initial metal ion concentration,
contact time were investigated for adsorption efficiency. It was determined that the best initial Ni (II) ion
concentration was 150 mg/L, adsorption contact time was 100 min, and solution pH was 6.27. The surface properties of the orange peel waste were investigated using scanning electron microscopy (SEM),
energy dispersive spectroscopy, scanning and Fourier transform infrared spectroscopy (FT-IR). The results showed that the isotherm data fit the Langmuir isotherm model, which corresponds to chemisorption and possible irreversibility of the process. The adsorption capacity for Ni (II) was calculated to be 4.92, 5.90 and 8.04 mg/g at 298 K, 308 K and 318 K, respectively. As a result of the adsorption kinetic data, it was determined that the adsorption of Ni (II) metal ion fits the pseudo-second-order kinetic model. Thermodynamic studies showed that the adsorption of Ni(II) ion on orange peel is spontaneous and endothermic. It has been seen that OPW is an effective and alternative material for the uptake of Ni (II) ions from the aqueous medium due to its high removal capacity, availability and low cost

References

  • Abukhadra, M. R., Dardir, F. M., Shaban, M., Ahmed, E. A., & Soliman, M. F. (2018). Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicology and environmental safety, 157, 358-368.
  • Ahmad, R., Kumar, R., & Haseeb, S. (2012). Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity. Arabian Journal of Chemistry, 5(3), 353-359.
  • Akpomie, K. G., Dawodu, F. A., & Adebowale, K. O. (2015). Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54(3), 757-767.
  • Azzam, A. M., El-Wakeel, S. T., Mostafa, B. B., & El-Shahat, M. F. (2016). Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. Journal of environmental chemical engineering, 4(2), 2196-2206.
  • Baysal, Z., Cinar, E., Bulut, Y., Alkan, H., & Dogru, M. (2009). Equilibrium and thermodynamic studies on biosorption of Pb (II) onto Candida albicans biomass. Journal of Hazardous Materials, 161(1), 62-67.
  • Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification–A review. Chemical Engineering Journal, 270, 244-271.
  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni (II) and Cu (II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chemical Engineering Journal, 136(1), 1-13.
  • Bhattacharyya, K. G., & Gupta, S. S. (2009). Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe (II), Co (II) and Ni (II) from solution. Applied Clay Science, 46(2), 216-221.
  • Bhatti, H. N., Khalid, R., & Hanif, M. A. (2009). Dynamic biosorption of Zn (II) and Cu (II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chemical Engineering Journal, 148(2-3), 434-443.
  • Brinza, L., Nygård, C. A., Dring, M. J., Gavrilescu, M., & Benning, L. G. (2009). Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresource technology, 100(5), 1727-1733.
  • Çelebi, H., Gök, G., & Gök, O. (2020). Adsorption capability of brewed tea waste in waters containing toxic lead (II), cadmium (II), nickel (II), and zinc (II) heavy metal ions. Scientific reports, 10(1), 1-12.
  • Chen, C., & Wang, X. (2006). Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research, 45(26), 9144-9149.
  • De Angelis, G., Medeghini, L., Conte, A. M., & Mignardi, S. (2017). Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497-1506. Feng, N., Guo, X., & Liang, S. (2009). Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials, 164(2-3), 1286-1292.
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.
  • Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219-232.
  • Guiza, S. (2017). Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecological Engineering, 99, 134-140.
  • Guo, X., & Wang, J. (2019). A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100.
  • Gupta, V. K. (1998). Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-202..
  • Güzel, F., Yakut, H., & Topal, G. (2008). Determination of kinetic and equilibrium parameters of the batch adsorption of Mn (II), Co (II), Ni (II) and Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of hazardous materials, 153(3), 1275-1287.
  • Hanif, A., Bhatti, H. N., & Hanif, M. A. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecological Engineering, 35(10), 1427-1434.
  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process safety and environmental protection, 76(4), 332-340.
  • Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., Liu, W., ‘‘Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration’’, Chemosphere, 173, 199–206, 2017.
  • Kameda, T., Honda, R., Kumagai, S., Saito, Y., & Yoshioka, T. (2019). Adsorption of Cu2+ and Ni2+ by tripolyphosphate-crosslinked chitosan-modified montmorillonite. Journal of Solid State Chemistry, 277, 143-148.
  • Kragović, M., Daković, A., Marković, M., Krstić, J., Gatta, G. D., & Rotiroti, N. (2013). Characterization of lead sorption by the natural and Fe (III)-modified zeolite. Applied Surface Science, 283, 764-774.
  • Kumar, D., & Gaur, J. P. (2011). Chemical reaction-and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresource Technology, 102(2), 633-640. Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366.
  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of molecular liquids, 273, 425-434.
  • Manikandaraja, P., & Senthilkumaran, R. (2014). A study on degradation and characterization of heavy metals in industrial effluents waste using Pseudomonas sp. isolated from soil samples. Int. J. Advan. Multi. Res, 1(1), 63-72.
  • Ofudje, E. A., Awotula, A. O., Hambate, G. V., Akinwunmi, F., Alayande, S. O., & Olukanni, O. D. (2017). Acid activation of groundnut husk for copper adsorption: kinetics and equilibrium studies. Desalination and Water Treatment, 86, 240-251.
  • Ofudje, E. A., Williams, O. D., Asogwa, K. K., & Awotula, A. O. (2013). Assessment of Langmuir, Freundlich and Rubunin-Radushhkevich Adsorption Isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. Int. J. Sci. and Eng. Res, 4(7), 1628-1634.
  • Padmavathy, V. (2008). Biosorption of nickel (II) ions by baker’s yeast: Kinetic, thermodynamic and desorption studies. Bioresource Technology, 99(8), 3100-3109.
  • Pérez-Marín, A. B., Zapata, V. M., Ortuno, J. F., Aguilar, M., Sáez, J., & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of hazardous materials, 139(1), 122-131.
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.
  • Rao, P. S., Reddy, K. S., Kalyani, S., & Krishnaiah, A. (2007). Comparative sorption of copper and nickel from aqueous solutions by natural neem (Azadirachta indica) sawdust and acid treated sawdust. Wood Science and Technology, 41(5), 427-442.
  • Riaz, U., Murtaza, G., Saifullah, F. M., & Farooq, M. (2018). Comparable effect of commercial composts on chemical properties of sandy clay loam soil and accumulation of trace elements in soil-plant system. Int J Agric Biol, 20, 85-92.
  • Taha, A. A., Shreadah, M. A., Ahmed, A. M., & Heiba, H. F. (2016). Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination. Journal of Environmental Chemical Engineering, 4(1), 1166-1180.
  • Tamjidi, S., Esmaeili, H., & Moghadas, B. K. (2019). Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express, 6(10), 102004.
  • Tümsek, F., & Karabacakoğlu, B. (2012). Nikel (II) iyonlarının sulu çözeltiden granül aktif karbon üzerine adsorpsiyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 1-6.
  • Üstün, G. E. (2009). Occurrence and removal of metals in urban wastewater treatment plants. Journal of hazardous materials, 172(2-3), 833-838.
  • Vimala, R., & Das, N. (2009). Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of hazardous materials, 168(1), 376-382.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2-3), 366-373.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal, 153(1-3), 1-8.
  • Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., & Fang, P. (2016). Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochemical Engineering Journal, 105, 27-35.
  • Yavuz, Ö., Altunkaynak, Y., & Güzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.

Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar

Year 2022, , 322 - 339, 23.06.2022
https://doi.org/10.28979/jarnas.1000133

Abstract

Bu çalışma, sulu çözeltilerden Ni(II) iyonlarının uzaklaştırılması için portakal kabuğu atığının
(PKA) değer-lendirilmesini anlatmaktadır. Adsorpsiyon verimi için; pH, başlangıç metal iyon konsantrasyonu, temas süresi ve sıcaklık gibi farklı parametrelerin etkileri araştırıldı. Ni (II) iyonu için, en iyi
başlangıç konsantrasyonunun 150 mg/L, adsorpsiyon temas süresinin 100 dakika ve çözelti pH'ının 6.27
olduğu şartların en uygun çalışma koşulları olduğu belirlendi. Portakal kabuğu atığının yüzey özellikleri, taramalı elektron mikroskobu (SEM), enerji dağılımlı spektroskopi ve Fourier dönüşümü kızılötesi
spektroskopisi (FT-IR) kullanılarak araştırıldı. Sonuçlar, izoterm verilerinin, kimyasal adsorpsiyona ve
işlemin olası tersinmezliğine karşılık gelen Langmuir izoterm modeline (Freundlich, Dubinin- Radushkevich ve Temkin modelleriyle karşılaştırıldığında) uyduğunu gösterdi. Ni (II) için adsorpsiyon kapasitesi 298 K, 308 K ve 318 K'de sırasıyla 4.92, 5.90 ve 8.04 mg/g olarak hesaplanmıştır. Adsorp-siyon
kinetik verileri sonucunda Ni (II) metal iyonunun kinetiği incelendiğinde, (Yalancı birinci derece, Yalancı ikinci derece, Weber- Morris ve Elovich kinetik modelleri) adsorpsiyonunun Yalanci ikinci derece
kinetik modele (pseudo-second-order) uyduğu belirlendi. Termodinamik çalışmalar portakal kabuğu
üzerinde Ni(II) iyonunun adsorpsiyonunun kendiliğinden ve endotermik olduğunu göstermiştir. Atık
portakal kabuklarının, yüksek uzak-laştırma kapasitesi, kolay bulunabilirliği, düşük maliyeti, kullanılabilir bir tarımsal atık olması, geri dönüşümü ve çevreye zarar vermemesi gibi nedenlerle sulu ortamdan
Ni(II) iyonlarının alınmasında farklı adsorbanlarla karşılaştırıldığında, etkili ve alternatif bir malzeme
olduğu görülmüştür.

References

  • Abukhadra, M. R., Dardir, F. M., Shaban, M., Ahmed, E. A., & Soliman, M. F. (2018). Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicology and environmental safety, 157, 358-368.
  • Ahmad, R., Kumar, R., & Haseeb, S. (2012). Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity. Arabian Journal of Chemistry, 5(3), 353-359.
  • Akpomie, K. G., Dawodu, F. A., & Adebowale, K. O. (2015). Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54(3), 757-767.
  • Azzam, A. M., El-Wakeel, S. T., Mostafa, B. B., & El-Shahat, M. F. (2016). Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. Journal of environmental chemical engineering, 4(2), 2196-2206.
  • Baysal, Z., Cinar, E., Bulut, Y., Alkan, H., & Dogru, M. (2009). Equilibrium and thermodynamic studies on biosorption of Pb (II) onto Candida albicans biomass. Journal of Hazardous Materials, 161(1), 62-67.
  • Bhatnagar, A., Sillanpää, M., & Witek-Krowiak, A. (2015). Agricultural waste peels as versatile biomass for water purification–A review. Chemical Engineering Journal, 270, 244-271.
  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni (II) and Cu (II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chemical Engineering Journal, 136(1), 1-13.
  • Bhattacharyya, K. G., & Gupta, S. S. (2009). Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe (II), Co (II) and Ni (II) from solution. Applied Clay Science, 46(2), 216-221.
  • Bhatti, H. N., Khalid, R., & Hanif, M. A. (2009). Dynamic biosorption of Zn (II) and Cu (II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge. Chemical Engineering Journal, 148(2-3), 434-443.
  • Brinza, L., Nygård, C. A., Dring, M. J., Gavrilescu, M., & Benning, L. G. (2009). Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresource technology, 100(5), 1727-1733.
  • Çelebi, H., Gök, G., & Gök, O. (2020). Adsorption capability of brewed tea waste in waters containing toxic lead (II), cadmium (II), nickel (II), and zinc (II) heavy metal ions. Scientific reports, 10(1), 1-12.
  • Chen, C., & Wang, X. (2006). Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research, 45(26), 9144-9149.
  • De Angelis, G., Medeghini, L., Conte, A. M., & Mignardi, S. (2017). Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497-1506. Feng, N., Guo, X., & Liang, S. (2009). Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials, 164(2-3), 1286-1292.
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.
  • Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 4(3), 219-232.
  • Guiza, S. (2017). Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecological Engineering, 99, 134-140.
  • Guo, X., & Wang, J. (2019). A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100.
  • Gupta, V. K. (1998). Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-202..
  • Güzel, F., Yakut, H., & Topal, G. (2008). Determination of kinetic and equilibrium parameters of the batch adsorption of Mn (II), Co (II), Ni (II) and Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of hazardous materials, 153(3), 1275-1287.
  • Hanif, A., Bhatti, H. N., & Hanif, M. A. (2009). Removal and recovery of Cu (II) and Zn (II) using immobilized Mentha arvensis distillation waste biomass. Ecological Engineering, 35(10), 1427-1434.
  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process safety and environmental protection, 76(4), 332-340.
  • Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., Liu, W., ‘‘Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration’’, Chemosphere, 173, 199–206, 2017.
  • Kameda, T., Honda, R., Kumagai, S., Saito, Y., & Yoshioka, T. (2019). Adsorption of Cu2+ and Ni2+ by tripolyphosphate-crosslinked chitosan-modified montmorillonite. Journal of Solid State Chemistry, 277, 143-148.
  • Kragović, M., Daković, A., Marković, M., Krstić, J., Gatta, G. D., & Rotiroti, N. (2013). Characterization of lead sorption by the natural and Fe (III)-modified zeolite. Applied Surface Science, 283, 764-774.
  • Kumar, D., & Gaur, J. P. (2011). Chemical reaction-and particle diffusion-based kinetic modeling of metal biosorption by a Phormidium sp.-dominated cyanobacterial mat. Bioresource Technology, 102(2), 633-640. Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366.
  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. (2019). A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of molecular liquids, 273, 425-434.
  • Manikandaraja, P., & Senthilkumaran, R. (2014). A study on degradation and characterization of heavy metals in industrial effluents waste using Pseudomonas sp. isolated from soil samples. Int. J. Advan. Multi. Res, 1(1), 63-72.
  • Ofudje, E. A., Awotula, A. O., Hambate, G. V., Akinwunmi, F., Alayande, S. O., & Olukanni, O. D. (2017). Acid activation of groundnut husk for copper adsorption: kinetics and equilibrium studies. Desalination and Water Treatment, 86, 240-251.
  • Ofudje, E. A., Williams, O. D., Asogwa, K. K., & Awotula, A. O. (2013). Assessment of Langmuir, Freundlich and Rubunin-Radushhkevich Adsorption Isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. Int. J. Sci. and Eng. Res, 4(7), 1628-1634.
  • Padmavathy, V. (2008). Biosorption of nickel (II) ions by baker’s yeast: Kinetic, thermodynamic and desorption studies. Bioresource Technology, 99(8), 3100-3109.
  • Pérez-Marín, A. B., Zapata, V. M., Ortuno, J. F., Aguilar, M., Sáez, J., & Lloréns, M. (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of hazardous materials, 139(1), 122-131.
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials, 177(1-3), 70-80.
  • Rao, P. S., Reddy, K. S., Kalyani, S., & Krishnaiah, A. (2007). Comparative sorption of copper and nickel from aqueous solutions by natural neem (Azadirachta indica) sawdust and acid treated sawdust. Wood Science and Technology, 41(5), 427-442.
  • Riaz, U., Murtaza, G., Saifullah, F. M., & Farooq, M. (2018). Comparable effect of commercial composts on chemical properties of sandy clay loam soil and accumulation of trace elements in soil-plant system. Int J Agric Biol, 20, 85-92.
  • Taha, A. A., Shreadah, M. A., Ahmed, A. M., & Heiba, H. F. (2016). Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination. Journal of Environmental Chemical Engineering, 4(1), 1166-1180.
  • Tamjidi, S., Esmaeili, H., & Moghadas, B. K. (2019). Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express, 6(10), 102004.
  • Tümsek, F., & Karabacakoğlu, B. (2012). Nikel (II) iyonlarının sulu çözeltiden granül aktif karbon üzerine adsorpsiyonu. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 1-6.
  • Üstün, G. E. (2009). Occurrence and removal of metals in urban wastewater treatment plants. Journal of hazardous materials, 172(2-3), 833-838.
  • Vimala, R., & Das, N. (2009). Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of hazardous materials, 168(1), 376-382.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2-3), 366-373.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal, 153(1-3), 1-8.
  • Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., & Fang, P. (2016). Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochemical Engineering Journal, 105, 27-35.
  • Yavuz, Ö., Altunkaynak, Y., & Güzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Yalçın Altunkaynak 0000-0002-3771-6737

Mutlu Canpolat This is me 0000-0003-2562-9297

Publication Date June 23, 2022
Submission Date September 24, 2021
Published in Issue Year 2022

Cite

APA Altunkaynak, Y., & Canpolat, M. (2022). Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Journal of Advanced Research in Natural and Applied Sciences, 8(2), 322-339. https://doi.org/10.28979/jarnas.1000133
AMA Altunkaynak Y, Canpolat M. Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar. JARNAS. June 2022;8(2):322-339. doi:10.28979/jarnas.1000133
Chicago Altunkaynak, Yalçın, and Mutlu Canpolat. “Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 2 (June 2022): 322-39. https://doi.org/10.28979/jarnas.1000133.
EndNote Altunkaynak Y, Canpolat M (June 1, 2022) Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Journal of Advanced Research in Natural and Applied Sciences 8 2 322–339.
IEEE Y. Altunkaynak and M. Canpolat, “Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar”, JARNAS, vol. 8, no. 2, pp. 322–339, 2022, doi: 10.28979/jarnas.1000133.
ISNAD Altunkaynak, Yalçın - Canpolat, Mutlu. “Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Journal of Advanced Research in Natural and Applied Sciences 8/2 (June 2022), 322-339. https://doi.org/10.28979/jarnas.1000133.
JAMA Altunkaynak Y, Canpolat M. Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar. JARNAS. 2022;8:322–339.
MLA Altunkaynak, Yalçın and Mutlu Canpolat. “Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 2, 2022, pp. 322-39, doi:10.28979/jarnas.1000133.
Vancouver Altunkaynak Y, Canpolat M. Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar. JARNAS. 2022;8(2):322-39.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).