Research Article
BibTex RIS Cite

Health Assessment of a Partially Collapsed Bridge Using Ground Radar (GPR) Application

Year 2022, , 805 - 819, 15.12.2022
https://doi.org/10.28979/jarnas.1089956

Abstract

Condition assessment of bridge structures within the context of health monitoring of structures, as well as the life cycle of structures, is of vital significance for engineers. Undoubtedly, the detection of bridge structural defects in the collapsed bridge in particular internal structural elements such as bridge deck delamination, the formation of cracks and corrosion of rebar will enable engineers to take necessary action, and prolong the serviceability of the structure. Applications of GPR have proved to be effective in detecting such imperfections if utilised correctly. GPR is also used in other structures. Since the GPR data was obtained in the form of two dimensional images after pro-cessing, the sections were examined in two dimensions and the reflected/scattered electromagnetic (EM) wave fields on the radargrams of the three dimensional images were examined. According to the results, the reflected/scattered wave field locations of the bridge on the processed data define the locations and depths of the structural elements. The apex width of the resulting GPR hyperbolas determines the structural elements. This paper reviews the collapse in April 2012 of a case study bridge over a creek, examining the possibility that this collapse could have been anticipated, and therefore, prevented with an adequate structural health monitoring programme. This paper also presents the results of the application of GPR. Factors which have been identified as having directly contributed to the failure of the case study bridge include the corrosion of rebar, scour of the foundations and a weakened bridge deck. The methodology implemented in this paper can be used to enhance the decision making of structural engineers and/or asset managers relating to the Ground Penetrating Radar application of corrosion affected bridges.

References

  • Asadi P., Gindy M., Alvarez M., Asadi A., (2020), A computer vision based rebar detection chain for automatic processing of concrete bridge deck GPR data, Automation in Construction, Volume 112, 103106, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2020.103106.
  • Benmokrane, B., El Salakawy, E. F., El Ragaby, A., Desgagné, G. ve Lackey, T. (2004). Design, construction and monitoring of four innovative concrete bridge decks using non corrosive FRP composite bars. Annual Conference & Exhibition of the Transportation Association of Canada. Québec, Canada.
  • Brandimarte, L., Paron, P., Di Baldassarre, G. (2012). Bridge pier scour: A review of processes, measurements and estimates. Environmental engineering and management journal. 11. 10.30638/eemj.2012.121.Cao R., Agrawal A.K., El-Tawil S., 2021, Overheight impact on bridges: A computational case study of the Skagit River bridge collapse, Engineering Structures, Volume 237, 2021, 112215, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2021.112215.
  • Peng Han, Guofu Qiao, Bingbing Guo, Dongsheng Li, Jinping Ou, 2022, Investigation of the low-frequency stray current induced corrosion on reinforced concrete infrastructure in high-speed rail transit power supply system, International Journal of Electrical Power & Energy Systems, Volume 134, 2022, 107436, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2021.107436.
  • Chen, X.-j., Gao, Z.-f., Ma, Y.-e., and Guo, Q., Application of Wavelet Analysis in Vibration Signal Processing of Bridge Structure, 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Vol. 1, March 13–14, 2010, pp. 671–674, doi: 10.1109/ICMTMA.2010.95.
  • Darmawan M. S., Stewart M. G., 2007, Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders, Structural Safety, Volume 29, Issue 1, 2007, Pages 16-31, ISSN 0167-4730, https://doi.org/10.1016/j.strusafe.2005.11.002.
  • Deng L., Cai C.S., (2010), Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures, Review, Practice Periodical on Structural Design and Construction, 15, 125–134., doi/abs/10.1061/%28ASCE%29SC.1943-5576.0000041
  • DeNoto G. Bridged repair of large ventral hernia defects using an ovine reinforced biologic: A case series, Annals of Medicine and Surgery, Volume 75, 2022, 103446, ISSN 2049-0801, https://doi.org/10.1016/j.amsu.2022.103446.
  • Doğan A. E., (2008). Effects Of Collars on Scour Reduction at Bridge Abutments”. (Mas. Sc. Thesis), Metu, Ankara, https://etd.lib.metu.edu.tr/upload/3/12610203/index.pdf
  • Enright, M. P., and Frangopol, D. M. (1998). Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Eng. Struct., 2011, 960–971., ISSN 0141-0296, https://doi.org/10.1016/S0141-0296(97)00190-9.
  • Frein de, R. and Rickard, S. T.,2011, The Synchronized Short-Time-Fourier-Transform: Properties and Definitions for Multichannel Source Separation, in IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 91-103, Jan. 2011, doi: 10.1109/TSP.2010.2088392.
  • Haasl, D., Roberts, N., Vesely, W., and Goldberg, F., (1981). Fault Tree Handbook, U.S. Nuclear Regulatory Commission, Washington D.C.
  • Hao S., (2010), I-35W Bridge Collapse, Journal of Bridge Engineering, 608-614-15-5, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000090
  • KGM, General Directorate of Highways, 2012, Republic of Turkiye, General Directorate of Highways, Site Collection Documents, KGM documents, Istatistikler, Kopru ve Tunel Bilgileri, 2012.
  • Kilic G., 2016, Applications of Ground Penetrating Radar (GPR) to Detect Hidden Beam Positions, Journal of Testing and Evaluation, 0090-3973 (IF = 1.162) (Category: Q3)
  • Kilic G. , Caner A. (2021) Augmented reality for bridge condition assessment using advanced non-destructive techniques, Structure and Infrastructure Engineering, 17:7, 977-989, DOI: 10.1080/15732479.2020.1782947
  • Kilic Gokhan, 2013, (Doktora Tezi) Application of Advance Non-destructive techniques for Bridge Health Assessment, PhD Dissertation, 2013, University of Greenwich
  • Kosaroglu, Sinan; Bilim, Funda; Tastan, Erkan. (2016). Cumhuriyet Üniversitesi, Mühendislik Fakültesi Binasının Yer Radarı (GPR) Yöntemi ile Hasarsız İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 5. 10.17798/beufen.90389.
  • LeBeau, K.H. and Wadia-Fascetti, S.J., (2007). Fault Tree Analysis of Schoharie Creek Bridge Collapse, Journal of Performance of Constructed Facilities, Vol. 21, No. 4, pg. 320-326. (2007)., doi/abs/10.1061/%28ASCE%290887-3828%282007%2921%3A4%28320%29
  • Li R.W., Cao D.S., Wu H., Wang D.F., (2021). Collapse analysis and damage evaluation of typical simply supported double-pier RC bridge under truck collision, Structures, Volume 33, 2021, Pages 3222-3238, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2021.06.041.
  • Li, F., Yuan, Y., Li, C. Q., (2011). Corrosion propagation of prestressing steel strands in concrete subject to chloride attack, Construction and Building Materials, Volume 25, Issue 10, 2011, Pages 3878-3885, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2011.04.011.
  • Li, J., Jiang, T., Grzybowski, S., and Cheng, C., (2010). Scale dependent wavelet selection for de-noising of partial discharge detection, in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 6, pp. 1705-1714, Dec. 2010, doi: 10.1109/TDEI.2010.5658220.
  • Liu Z., Gu X., Wu W., Zou X., Dong Q., Wang L., (2022) GPR-based detection of internal cracks in asphalt pavement: A combination method of DeepAugment data and object detection, Measurement, Volume 197, 111281, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2022.111281.
  • Melville, B.W., and Coleman, S.E. (2000). Bridge Scour, Water Resources Publications, LLC, Colorado, ABD. ISBN 13: 978-1-887201-18-6
  • Parrillo, R. ve Roberts, R. (2006). Bridge Deck Condition Assessment using Ground Penetrating Radar. ECNDT Geophysical Survey Systems. North Salem, NH, USA. ECNDT - Tu.4.2.5
  • Rhazi, J., Dous, O., Ballivy, G., Laurens, S. & Balayssac, J. P. (2003). Non-destructive health evaluation of concrete bridge decks by GPR and half cell potential techniques. 6th International Conference on Nondestructive Testing in Civil Engineering. Berlin
  • Shi, G., Chen, X., Song, X., Qi, F., and Ding, A., (2011) Signal Matching Wavelet for Ultrasonic Flaw Detection in High Background Noise, IEEE Trans. Ultrason. Ferr., Vol. 58, No. 4, pp. 776–787. DOI:10.1109/TUFFC.2011.1870
  • Stewart, M. G., and Rosowsky, D. V. (1998). Time-dependent reliability of deteriorating reinforced concrete bridge decks, Structural Safety, Volume 20, Issue 1, 1998, Pages 91-109, ISSN 0167-4730, https://doi.org/10.1016/S0167-4730(97)00021-0.
  • Taştan, E. , Koşaroğlu, S. & Bilim, F. (2017). Identifying of structural elements of building using Ground penetrating radar (GPR): A case study of the Cumhuriyet University, Turkey . Bitlis Eren University Journal of Science and Technology , 7 (1) , 22-26 . DOI: 10.17678/beuscitech.295134
  • Wolforst J. and Annandale G. (1998) Channel Degradation due to Gravel Mining: Application of Geomorphic Analysis and Sediment Transport Modeling Approaches, Proceedings: Unique Functional Consideration for Wetland Restoration, ASCE., doi/abs/10.1061/40382%281998%29167
  • Web. Çaycuma Köprüsünün Çökmesi Üzerine Görüşler http://www.tkic.org.tr/ documents/caycuma.pdf. Erişim Tarihi: 29.10.2016.
  • Yanmaz, A. M., Caner A. (2012). Çaycuma Köprüsünün Çökmesi Üzerine Görüşler. Türkiye Köprü ve İnşaat Cemiyeti", (2012)

Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi

Year 2022, , 805 - 819, 15.12.2022
https://doi.org/10.28979/jarnas.1089956

Abstract

Köprü yapılarının sağlık durumlarının ve yapıların yaşam döngüsü bağlamında durumun değerlendirilmesi mü-hendisler için hayati öneme sahiptir. Kuşkusuz, yıkılmış köprülerdeki yapısal kusurların önceden tespit edilmesi, özel-likle yapı elamanlarındaki çatlaklar, donatıların açığa çıkması ve korozyonun tespiti, mühendislerin gerekli önlemleri alması ve yapının daha uzun süre kullanılabilirliğini sağlamaktadır. GPR uygulamalarının doğru kullanıldığı takdirde, bu gibi kusurların tespitinde etkili olduğu kanıtlanmıştır. GPR yöntemi başka yapılar içerisinde de kullanılmaktadır. GPR verileri işlendikten sonra iki boyutlu görüntüler ayrı ayrı incelenerek ve görüntülere ait radargramlar üzerinde yansımış/saçılmış elektromanyetik (EM) dalga alanları da irdelenmiştir. Sonuç olarak, işlenmiş veriler üzerindeki köprüye ait yansımış/saçılmış dalga alanı konumları, yapısal elamanların konumlarını ve derinliklerini tanımlamakta-dır. Elde edilen GPR hiperbollerin tepe genişliği yapısal elamanları belirlemektedir. Bu çalışma, Nisan 2012'de bir nehir üzerindeki köprüde meydana gelen kısmi çöküşü incelemektedir. Bu çöküşün yeterli bir yapısal sağlık izleme programı ile önlenebileceği tespit edilmiştir. İncelenen köprünün kısmi yıkılmasını doğrudan etkileyen faktörler ara-sında yapısal elamanların demir korozyonu, temellerin aşınması ve zayıflamış bir köprü döşemesi bulunmaktadır. Bu çalışmada uygulanan yöntem, korozyondan etkilenen köprülerin GPR uygulaması ile ilgili yapı mühendislerinin ve / veya sorumluların karar vermelerini geliştirmek için kullanılabilir.

References

  • Asadi P., Gindy M., Alvarez M., Asadi A., (2020), A computer vision based rebar detection chain for automatic processing of concrete bridge deck GPR data, Automation in Construction, Volume 112, 103106, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2020.103106.
  • Benmokrane, B., El Salakawy, E. F., El Ragaby, A., Desgagné, G. ve Lackey, T. (2004). Design, construction and monitoring of four innovative concrete bridge decks using non corrosive FRP composite bars. Annual Conference & Exhibition of the Transportation Association of Canada. Québec, Canada.
  • Brandimarte, L., Paron, P., Di Baldassarre, G. (2012). Bridge pier scour: A review of processes, measurements and estimates. Environmental engineering and management journal. 11. 10.30638/eemj.2012.121.Cao R., Agrawal A.K., El-Tawil S., 2021, Overheight impact on bridges: A computational case study of the Skagit River bridge collapse, Engineering Structures, Volume 237, 2021, 112215, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2021.112215.
  • Peng Han, Guofu Qiao, Bingbing Guo, Dongsheng Li, Jinping Ou, 2022, Investigation of the low-frequency stray current induced corrosion on reinforced concrete infrastructure in high-speed rail transit power supply system, International Journal of Electrical Power & Energy Systems, Volume 134, 2022, 107436, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2021.107436.
  • Chen, X.-j., Gao, Z.-f., Ma, Y.-e., and Guo, Q., Application of Wavelet Analysis in Vibration Signal Processing of Bridge Structure, 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Vol. 1, March 13–14, 2010, pp. 671–674, doi: 10.1109/ICMTMA.2010.95.
  • Darmawan M. S., Stewart M. G., 2007, Spatial time-dependent reliability analysis of corroding pretensioned prestressed concrete bridge girders, Structural Safety, Volume 29, Issue 1, 2007, Pages 16-31, ISSN 0167-4730, https://doi.org/10.1016/j.strusafe.2005.11.002.
  • Deng L., Cai C.S., (2010), Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures, Review, Practice Periodical on Structural Design and Construction, 15, 125–134., doi/abs/10.1061/%28ASCE%29SC.1943-5576.0000041
  • DeNoto G. Bridged repair of large ventral hernia defects using an ovine reinforced biologic: A case series, Annals of Medicine and Surgery, Volume 75, 2022, 103446, ISSN 2049-0801, https://doi.org/10.1016/j.amsu.2022.103446.
  • Doğan A. E., (2008). Effects Of Collars on Scour Reduction at Bridge Abutments”. (Mas. Sc. Thesis), Metu, Ankara, https://etd.lib.metu.edu.tr/upload/3/12610203/index.pdf
  • Enright, M. P., and Frangopol, D. M. (1998). Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Eng. Struct., 2011, 960–971., ISSN 0141-0296, https://doi.org/10.1016/S0141-0296(97)00190-9.
  • Frein de, R. and Rickard, S. T.,2011, The Synchronized Short-Time-Fourier-Transform: Properties and Definitions for Multichannel Source Separation, in IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 91-103, Jan. 2011, doi: 10.1109/TSP.2010.2088392.
  • Haasl, D., Roberts, N., Vesely, W., and Goldberg, F., (1981). Fault Tree Handbook, U.S. Nuclear Regulatory Commission, Washington D.C.
  • Hao S., (2010), I-35W Bridge Collapse, Journal of Bridge Engineering, 608-614-15-5, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000090
  • KGM, General Directorate of Highways, 2012, Republic of Turkiye, General Directorate of Highways, Site Collection Documents, KGM documents, Istatistikler, Kopru ve Tunel Bilgileri, 2012.
  • Kilic G., 2016, Applications of Ground Penetrating Radar (GPR) to Detect Hidden Beam Positions, Journal of Testing and Evaluation, 0090-3973 (IF = 1.162) (Category: Q3)
  • Kilic G. , Caner A. (2021) Augmented reality for bridge condition assessment using advanced non-destructive techniques, Structure and Infrastructure Engineering, 17:7, 977-989, DOI: 10.1080/15732479.2020.1782947
  • Kilic Gokhan, 2013, (Doktora Tezi) Application of Advance Non-destructive techniques for Bridge Health Assessment, PhD Dissertation, 2013, University of Greenwich
  • Kosaroglu, Sinan; Bilim, Funda; Tastan, Erkan. (2016). Cumhuriyet Üniversitesi, Mühendislik Fakültesi Binasının Yer Radarı (GPR) Yöntemi ile Hasarsız İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 5. 10.17798/beufen.90389.
  • LeBeau, K.H. and Wadia-Fascetti, S.J., (2007). Fault Tree Analysis of Schoharie Creek Bridge Collapse, Journal of Performance of Constructed Facilities, Vol. 21, No. 4, pg. 320-326. (2007)., doi/abs/10.1061/%28ASCE%290887-3828%282007%2921%3A4%28320%29
  • Li R.W., Cao D.S., Wu H., Wang D.F., (2021). Collapse analysis and damage evaluation of typical simply supported double-pier RC bridge under truck collision, Structures, Volume 33, 2021, Pages 3222-3238, ISSN 2352-0124, https://doi.org/10.1016/j.istruc.2021.06.041.
  • Li, F., Yuan, Y., Li, C. Q., (2011). Corrosion propagation of prestressing steel strands in concrete subject to chloride attack, Construction and Building Materials, Volume 25, Issue 10, 2011, Pages 3878-3885, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2011.04.011.
  • Li, J., Jiang, T., Grzybowski, S., and Cheng, C., (2010). Scale dependent wavelet selection for de-noising of partial discharge detection, in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 6, pp. 1705-1714, Dec. 2010, doi: 10.1109/TDEI.2010.5658220.
  • Liu Z., Gu X., Wu W., Zou X., Dong Q., Wang L., (2022) GPR-based detection of internal cracks in asphalt pavement: A combination method of DeepAugment data and object detection, Measurement, Volume 197, 111281, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2022.111281.
  • Melville, B.W., and Coleman, S.E. (2000). Bridge Scour, Water Resources Publications, LLC, Colorado, ABD. ISBN 13: 978-1-887201-18-6
  • Parrillo, R. ve Roberts, R. (2006). Bridge Deck Condition Assessment using Ground Penetrating Radar. ECNDT Geophysical Survey Systems. North Salem, NH, USA. ECNDT - Tu.4.2.5
  • Rhazi, J., Dous, O., Ballivy, G., Laurens, S. & Balayssac, J. P. (2003). Non-destructive health evaluation of concrete bridge decks by GPR and half cell potential techniques. 6th International Conference on Nondestructive Testing in Civil Engineering. Berlin
  • Shi, G., Chen, X., Song, X., Qi, F., and Ding, A., (2011) Signal Matching Wavelet for Ultrasonic Flaw Detection in High Background Noise, IEEE Trans. Ultrason. Ferr., Vol. 58, No. 4, pp. 776–787. DOI:10.1109/TUFFC.2011.1870
  • Stewart, M. G., and Rosowsky, D. V. (1998). Time-dependent reliability of deteriorating reinforced concrete bridge decks, Structural Safety, Volume 20, Issue 1, 1998, Pages 91-109, ISSN 0167-4730, https://doi.org/10.1016/S0167-4730(97)00021-0.
  • Taştan, E. , Koşaroğlu, S. & Bilim, F. (2017). Identifying of structural elements of building using Ground penetrating radar (GPR): A case study of the Cumhuriyet University, Turkey . Bitlis Eren University Journal of Science and Technology , 7 (1) , 22-26 . DOI: 10.17678/beuscitech.295134
  • Wolforst J. and Annandale G. (1998) Channel Degradation due to Gravel Mining: Application of Geomorphic Analysis and Sediment Transport Modeling Approaches, Proceedings: Unique Functional Consideration for Wetland Restoration, ASCE., doi/abs/10.1061/40382%281998%29167
  • Web. Çaycuma Köprüsünün Çökmesi Üzerine Görüşler http://www.tkic.org.tr/ documents/caycuma.pdf. Erişim Tarihi: 29.10.2016.
  • Yanmaz, A. M., Caner A. (2012). Çaycuma Köprüsünün Çökmesi Üzerine Görüşler. Türkiye Köprü ve İnşaat Cemiyeti", (2012)
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Article
Authors

Gökhan Kılıç 0000-0003-1797-0778

Publication Date December 15, 2022
Submission Date March 18, 2022
Published in Issue Year 2022

Cite

APA Kılıç, G. (2022). Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi. Journal of Advanced Research in Natural and Applied Sciences, 8(4), 805-819. https://doi.org/10.28979/jarnas.1089956
AMA Kılıç G. Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi. JARNAS. December 2022;8(4):805-819. doi:10.28979/jarnas.1089956
Chicago Kılıç, Gökhan. “Yer Radarı (GPR) Uygulaması Ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 4 (December 2022): 805-19. https://doi.org/10.28979/jarnas.1089956.
EndNote Kılıç G (December 1, 2022) Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi. Journal of Advanced Research in Natural and Applied Sciences 8 4 805–819.
IEEE G. Kılıç, “Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi”, JARNAS, vol. 8, no. 4, pp. 805–819, 2022, doi: 10.28979/jarnas.1089956.
ISNAD Kılıç, Gökhan. “Yer Radarı (GPR) Uygulaması Ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (December 2022), 805-819. https://doi.org/10.28979/jarnas.1089956.
JAMA Kılıç G. Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi. JARNAS. 2022;8:805–819.
MLA Kılıç, Gökhan. “Yer Radarı (GPR) Uygulaması Ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 4, 2022, pp. 805-19, doi:10.28979/jarnas.1089956.
Vancouver Kılıç G. Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi. JARNAS. 2022;8(4):805-19.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).