Research Article
BibTex RIS Cite
Year 2022, , 762 - 776, 15.12.2022
https://doi.org/10.28979/jarnas.1111459

Abstract

Supporting Institution

Çukurova Üniversitesi

Project Number

FBA-2021-14009

References

  • Abad, M. D., & Sánchez-López, J. C. (2013). Tribological properties of surface-modified Pd nanoparticles for electrical contacts. Wear, 297(1–2), 943–951. https://doi.org/10.1016/j.wear.2012.11.009
  • Abdullah, A. Z., Abdullah, H., & Bhatia, S. (2008). Improvement of loose contact diesel soot oxidation by synergic effects between metal oxides in K2O-V2O5/ZSM-5 catalysts. Catalysis Communications, 9(6), 1196–1200. https://doi.org/10.1016/j.catcom.2007.11.003
  • Ali, M. K. A., Xianjun, H., Mai, L., Bicheng, C., Turkson, R. F., & Qingping, C. (2016). Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear, 364–365, 270–281. https://doi.org/10.1016/j.wear.2016.08.005
  • Cao, L., Liu, J., Wan, Y., Yang, S., Gao, J., & Pu, J. (2018). Low-friction carbon-based tribofilm from poly-alpha-olefin oil on thermally oxidized Ti6Al4V. Surface and Coatings Technology, 337, 471–477. https://doi.org/10.1016/j.surfcoat.2018.01.057
  • Çelikten, I. (2003). An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection diesel engines. Applied Thermal Engineering, 23(16), 2051–2060. https://doi.org/10.1016/S1359-4311(03)00171-6
  • Chen, B., Gu, K., Fang, J., Jiang, W., Jiu, W., & Nan, Z. (2015). Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant. Applied Surface Science, 353, 326–332. https://doi.org/10.1016/j.apsusc.2015.06.107
  • Chou, R., Battez, A. H., Cabello, J. J., Viesca, J. L., Osorio, A., & Sagastume, A. (2010). Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribology International, 43(12), 2327–2332. https://doi.org/10.1016/j.triboint.2010.08.006
  • Ćurković, L., Ćurković, H. O., Salopek, S., Renjo, M. M., & Šegota, S. (2013). Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol-gel TiO2 films. Corrosion Science, 77, 176–184. https://doi.org/10.1016/j.corsci.2013.07.045
  • Dhiflaoui, H., Kaouther, K., & Larbi, A. B. C. (2018). Wear behavior and mechanical properties of TiO2 coating deposited electrophoretically on 316 L stainless steel. Journal of Tribology, 140(3). https://doi.org/10.1115/1.4038102
  • Dimkovski, Z., Anderberg, C., Ohlsson, R., & Rosén, B. G. (2011). Characterisation of worn cylinder liner surfaces by segmentation of honing and wear scratches. Wear, 271(3–4), 548–552. https://doi.org/10.1016/j.wear.2010.04.024
  • Fry, B. M., Chui, M. Y., Moody, G., & Wong, J. S. S. (2020). Interactions between organic friction modifier additives. Tribology International, 151. https://doi.org/10.1016/j.triboint.2020.106438
  • Ghaednia, H., Babaei, H., Jackson, R. L., Bozack, M. J., & Khodadadi, J. M. (2013). The effect of nanoparticles on thin film elasto-hydrodynamic lubrication. Applied Physics Letters, 103(26). https://doi.org/10.1063/1.4858485
  • Guegan, J., Southby, M., & Spikes, H. (2019). Friction Modifier Additives, Synergies and Antagonisms. Tribology Letters, 67(3). https://doi.org/10.1007/s11249-019-1198-z
  • Guo, Z., Yuan, C., Liu, P., Peng, Z., & Yan, X. (2013). Study on influence of cylinder liner surface texture on lubrication performance for cylinder liner-piston ring components. Tribology Letters, 51(1), 9–23. https://doi.org/10.1007/s11249-013-0141-y
  • Hernandez Battez, A., Fernandez Rico, J. E., Navas Arias, A., Viesca Rodriguez, J. L., Chou Rodriguez, R., & Diaz Fernandez, J. M. (2006). The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 261(3–4), 256–263. https://doi.org/10.1016/j.wear.2005.10.001
  • Heywood, J. B. (2018). Internal Combustion Engine Fundamentals, Second Edition. In Internal Combustion Engine Fundamentals Second Edition. Retrieved from https://www.accessengineeringlibrary.com/content/book/9781260116106%0Ahttps://www.accessengineeringlibrary.com/content/book/9781260116106.abstract
  • Hu, H., Peng, H., & Ding, G. (2013). Nucleate pool boiling heat transfer characteristics of refrigerant/ nanolubricant mixture with surfactant. International Journal of Refrigeration, 36(3), 1045–1055. https://doi.org/10.1016/j.ijrefrig.2012.12.015
  • Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., & Etsion, I. (2005). The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribology International, 38(3), 219–225. https://doi.org/10.1016/j.triboint.2004.08.004
  • Krishna Sabareesh, R., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO 2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems - An experimental investigation. International Journal of Refrigeration, 35(7), 1989–1996. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Kumar, V., Sinha, S. K., & Agarwal, A. K. (2019). Wear evaluation of engine piston rings coated with dual layer hard and soft coatings. Journal of Tribology, 141(3). https://doi.org/10.1115/1.4041762
  • Langlet, M., Burgos, M., Coutier, C., Jimenez, C., Morant, C., & Manso, M. (2001). Low temperature preparation of high refractive index and mechanically resistant sol-gel TiO2 films for multilayer antireflective coating applications. Journal of Sol-Gel Science and Technology, 22(1–2), 139–150. https://doi.org/10.1023/A:1011232807842
  • Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., & Choi, C. J. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
  • Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., & Kim, S. H. (2009). Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters, 35(2), 127–131. https://doi.org/10.1007/s11249-009-9441-7
  • Li, K. Y., Zhou, Z. F., Bello, I., Lee, C. S., & Lee, S. T. (2005). Study of tribological performance of ECR-CVD diamond-like carbon coatings on steel substrates Part 1. The effect of processing parameters and operating conditions. Wear, 258(10), 1577–1588. https://doi.org/10.1016/j.wear.2004.10.006
  • Li, S., & Bhushan, B. (2016). Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives. Applied Surface Science, 378, 308–319. https://doi.org/10.1016/j.apsusc.2016.03.220
  • Lin, J., Wei, R., Bitsis, D. C., & Lee, P. M. (2016). Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications. Surface and Coatings Technology, 298, 121–131. https://doi.org/10.1016/j.surfcoat.2016.04.061
  • Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., & Fan, R. (2004). Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters, 17(4), 961–966. https://doi.org/10.1007/s11249-004-8109-6
  • Ma, J., Mo, Y., & Bai, M. (2009). Effect of Ag nanoparticles additive on the tribological behavior of multialkylated cyclopentanes (MACs). Wear, 266(7–8), 627–631. https://doi.org/10.1016/j.wear.2008.08.006
  • Ma, S., Zheng, S., Cao, D., & Guo, H. (2010). Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology, 8(5), 468–472. https://doi.org/10.1016/j.partic.2009.06.007
  • Mishra, A., & Prasad, R. (2014). Preparation and application of perovskite catalysts for diesel soot emissions control: An overview. Catalysis Reviews - Science and Engineering, Vol. 56, pp. 57–81. https://doi.org/10.1080/01614940.2014.866438
  • Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101(2), 239–253. https://doi.org/10.1093/toxsci/kfm240
  • Nabhan, A., Ghazaly, N. M., Mousa, H. M., & Rashed, A. (2020). Influence of TiO2 and SiO2 nanoparticles additives on the engine oil tribological properties: Experimental study at different operating conditions. International Journal of Advanced Science and Technology, 29(1), 845–855.
  • Nagashima, K., Kawa, T., & Tsuchiya, K. (2003). Indicated mean effective pressure measuring method using optical fiber pressure sensor. SAE Technical Papers. https://doi.org/10.4271/2003-01-2013
  • Nguyen, L. D. K., Sung, N. W., Lee, S. S., & Kim, H. S. (2011). Effects of split injection, oxygen enriched air and heavy EGR on soot emissions in a diesel engine. International Journal of Automotive Technology, 12(3), 339–350. https://doi.org/10.1007/s12239-011-0040-x
  • Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232. https://doi.org/10.1016/j.triboint.2012.10.024
  • Pahmi, A., Hisyam Basri, M., Mustaffa, M. E., Yaakob, Y., Sharudin, H., Ismail, N. I., & Talib, R. J. (2019). Intake pressure and brake mean effective pressure analysis on various intake manifold design. Journal of Physics: Conference Series, 1349(1). https://doi.org/10.1088/1742-6596/1349/1/012080
  • Pan, Q., & Zhang, X. (2010). Synthesis and tribological behavior of oil-soluble cu nanoparticles as additive in SF15W/40 lubricating oil. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 39(10), 1711–1714. https://doi.org/10.1016/s1875-5372(10)60129-4
  • Pecora, R. (2000). Dynamic light scattering measurement of nanometer particles in liquids. Journal of Nanoparticle Research, 2(2), 123–131. https://doi.org/10.1023/A:1010067107182
  • Peng, Y., Hu, Y., & Wang, H. (2007). Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribology Letters, 25(3), 247–253. https://doi.org/10.1007/s11249-006-9176-7
  • Podgornik, B., Vilhena, L. M., Sedlaček, M., Rek, Z., & Žun, I. (2012). Effectiveness and design of surface texturing for different lubrication regimes. Meccanica, 47(7), 1613–1622. https://doi.org/10.1007/s11012-012-9540-7
  • Ratoi, M., Niste, V. B., Alghawel, H., Suen, Y. F., & Nelson, K. (2014). The impact of organic friction modifiers on engine oil tribofilms. RSC Advances, 4(9), 4278–4285. https://doi.org/10.1039/c3ra46403b
  • Ronen, A., Etsion, I., & Kligerman, Y. (2001). Friction-reducing surface-texturing in reciprocating automotive components. Tribology Transactions, 44(3), 359–366. https://doi.org/10.1080/10402000108982468
  • Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., & Cao, B. (2012). Synthesis of monodispersed ZnAl 2O 4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), 4305–4310. https://doi.org/10.1016/j.materresbull.2012.09.013
  • Strenge, K. (1995). Introduction to Modern Colloid Science. Zeitschrift Für Physikalische Chemie, 189(2), 277–278. https://doi.org/10.1524/zpch.1995.189.part_2.277a
  • Tao, X., Jiazheng, Z., & Kang, X. (1996). The ball-bearing effect of diamond nanoparticles as an oil additive. Journal of Physics D: Applied Physics, 29(11), 2932–2937. https://doi.org/10.1088/0022-3727/29/11/029
  • Taylor, C. M. (1998). Automobile engine tribology-design considerations for efficiency and durability. Wear, 221(1), 1–8. https://doi.org/10.1016/S0043-1648(98)00253-1
  • Tung, S. C., & Gao, H. (2003). Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels. Wear, 255(7–12), 1276–1285. https://doi.org/10.1016/S0043-1648(03)00240-0
  • Wan, Y., Chao, W., Liu, Y., & Zhang, J. (2011). Tribological performance of Fluoroalkylsilane modification of sol-gel TiO2 coating. Journal of Sol-Gel Science and Technology, 57(2), 193–197. https://doi.org/10.1007/s10971-010-2341-3
  • Wang, X. L., Yin, Y. L., Zhang, G. N., Wang, W. Y., & Zhao, K. K. (2013). Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel. Physics Procedia, 50, 466–472. https://doi.org/10.1016/j.phpro.2013.11.073
  • Wróblewski, P., & Koszalka, G. (2021). An Experimental Study on Frictional Losses of Coated Piston Rings with Symmetric and Asymmetric Geometry. SAE International Journal of Engines, 14(6). https://doi.org/10.4271/03-14-06-0051
  • Yang, G., Zhang, Z., Zhang, S., Yu, L., & Zhang, P. (2013). Synthesis and characterization of highly stable dispersions of copper nanoparticles by a novel one-pot method. Materials Research Bulletin, 48(4), 1716–1719. https://doi.org/10.1016/j.materresbull.2013.01.025
  • Yilmaz, A. C. (2020a). Performance evaluation of a refrigeration system using nanolubricant. Applied Nanoscience (Switzerland), 10(5), 1667–1678. https://doi.org/10.1007/s13204-020-01258-5
  • Yilmaz, A. C. (2020b). Tribological Enhancement Features of Various Nanoparticles as Engine Lubricant Additives: An Experimental Study. Arabian Journal for Science and Engineering, 45(2), 1125–1134. https://doi.org/10.1007/s13369-019-04243-5
  • Yin, B., Li, X., Fu, Y., & Yun, W. (2012). Effect of laser textured dimples on the lubrication performance of cylinder liner in diesel engine. Lubrication Science, 24(7), 293–312. https://doi.org/10.1002/ls.1185
  • YU, H. long, XU, Y., SHI, P. jing, XU, B. shi, WANG, X. li, & LIU, Q. (2008). Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China (English Edition), 18(3), 636–641. https://doi.org/10.1016/S1003-6326(08)60111-9
  • Zhang, S., Hu, L., Feng, D., & Wang, H. (2013). Anti-wear and friction-reduction mechanism of Sn and Fe nanoparticles as additives of multialkylated cyclopentanes under vacuum condition. Vacuum, 87, 75–80. https://doi.org/10.1016/j.vacuum.2012.07.009
  • Zin, V., Agresti, F., Barison, S., Colla, L., Mercadelli, E., Fabrizio, M., & Pagura, C. (2014). Tribological properties of engine oil with carbon nano-horns as nano-additives. Tribology Letters, 55(1), 45–53. https://doi.org/10.1007/s11249-014-0330-3

Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant

Year 2022, , 762 - 776, 15.12.2022
https://doi.org/10.28979/jarnas.1111459

Abstract

This experimental research presents the friction and wear characteristics of piston ring-cylinder liner component of a diesel engine running on commercial engine oil (5W-30) and TiO2 nanoparticle (~20 nm, ≥99.5% trace metals basis) incorporated 5W-30 engine oil (nanolubricant) to observe the performance parameters in terms of mean effective pressures and smoke emissions. Dynamic light scattering was utilized to examine the nanoparticle dispersion in the lubricant. Thermo-gravimetric analysis on nanoparticles was conducted to examine the thermal endurance during abrasion tests. The samples directly cut from the spare piston ring of the test engine underwent severe friction and wear tests via linear friction module. Coefficient of friction was considered as comparison param-eter to understand the tribological behavior of friction pairs submerged in two different lubricants. Scanning electron microscopy analysis was conducted to observe morphology of the nanoparticle and to analyze the surface structure of the samples before and after the abrasion tests. Atomic force microscopy analysis was done to obtain the 3D images of the worn surfaces and to make a comprehensive comparison of tribological performance between engine lubricant and nanolubricant. The results depicted that, TiO2 is effective in reducing coefficient of friction by an average of 10.37% and wear rate by 33.58% as well as improving brake mean effective pressure by an average of 4.95% and reducing friction mean effective pressure by an average of 9.34% when compared to those of the engine oil. In parallel with reduced friction, TiO2 incorporation in engine oil yielded an average reduction of 9.11% in smoke opacity. The experiments suggest promising results in terms of utilization of low friction, fuel efficient and environmental friendly internal combustion engines fulfilling strict emission regulations.

Project Number

FBA-2021-14009

References

  • Abad, M. D., & Sánchez-López, J. C. (2013). Tribological properties of surface-modified Pd nanoparticles for electrical contacts. Wear, 297(1–2), 943–951. https://doi.org/10.1016/j.wear.2012.11.009
  • Abdullah, A. Z., Abdullah, H., & Bhatia, S. (2008). Improvement of loose contact diesel soot oxidation by synergic effects between metal oxides in K2O-V2O5/ZSM-5 catalysts. Catalysis Communications, 9(6), 1196–1200. https://doi.org/10.1016/j.catcom.2007.11.003
  • Ali, M. K. A., Xianjun, H., Mai, L., Bicheng, C., Turkson, R. F., & Qingping, C. (2016). Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear, 364–365, 270–281. https://doi.org/10.1016/j.wear.2016.08.005
  • Cao, L., Liu, J., Wan, Y., Yang, S., Gao, J., & Pu, J. (2018). Low-friction carbon-based tribofilm from poly-alpha-olefin oil on thermally oxidized Ti6Al4V. Surface and Coatings Technology, 337, 471–477. https://doi.org/10.1016/j.surfcoat.2018.01.057
  • Çelikten, I. (2003). An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection diesel engines. Applied Thermal Engineering, 23(16), 2051–2060. https://doi.org/10.1016/S1359-4311(03)00171-6
  • Chen, B., Gu, K., Fang, J., Jiang, W., Jiu, W., & Nan, Z. (2015). Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant. Applied Surface Science, 353, 326–332. https://doi.org/10.1016/j.apsusc.2015.06.107
  • Chou, R., Battez, A. H., Cabello, J. J., Viesca, J. L., Osorio, A., & Sagastume, A. (2010). Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribology International, 43(12), 2327–2332. https://doi.org/10.1016/j.triboint.2010.08.006
  • Ćurković, L., Ćurković, H. O., Salopek, S., Renjo, M. M., & Šegota, S. (2013). Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol-gel TiO2 films. Corrosion Science, 77, 176–184. https://doi.org/10.1016/j.corsci.2013.07.045
  • Dhiflaoui, H., Kaouther, K., & Larbi, A. B. C. (2018). Wear behavior and mechanical properties of TiO2 coating deposited electrophoretically on 316 L stainless steel. Journal of Tribology, 140(3). https://doi.org/10.1115/1.4038102
  • Dimkovski, Z., Anderberg, C., Ohlsson, R., & Rosén, B. G. (2011). Characterisation of worn cylinder liner surfaces by segmentation of honing and wear scratches. Wear, 271(3–4), 548–552. https://doi.org/10.1016/j.wear.2010.04.024
  • Fry, B. M., Chui, M. Y., Moody, G., & Wong, J. S. S. (2020). Interactions between organic friction modifier additives. Tribology International, 151. https://doi.org/10.1016/j.triboint.2020.106438
  • Ghaednia, H., Babaei, H., Jackson, R. L., Bozack, M. J., & Khodadadi, J. M. (2013). The effect of nanoparticles on thin film elasto-hydrodynamic lubrication. Applied Physics Letters, 103(26). https://doi.org/10.1063/1.4858485
  • Guegan, J., Southby, M., & Spikes, H. (2019). Friction Modifier Additives, Synergies and Antagonisms. Tribology Letters, 67(3). https://doi.org/10.1007/s11249-019-1198-z
  • Guo, Z., Yuan, C., Liu, P., Peng, Z., & Yan, X. (2013). Study on influence of cylinder liner surface texture on lubrication performance for cylinder liner-piston ring components. Tribology Letters, 51(1), 9–23. https://doi.org/10.1007/s11249-013-0141-y
  • Hernandez Battez, A., Fernandez Rico, J. E., Navas Arias, A., Viesca Rodriguez, J. L., Chou Rodriguez, R., & Diaz Fernandez, J. M. (2006). The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 261(3–4), 256–263. https://doi.org/10.1016/j.wear.2005.10.001
  • Heywood, J. B. (2018). Internal Combustion Engine Fundamentals, Second Edition. In Internal Combustion Engine Fundamentals Second Edition. Retrieved from https://www.accessengineeringlibrary.com/content/book/9781260116106%0Ahttps://www.accessengineeringlibrary.com/content/book/9781260116106.abstract
  • Hu, H., Peng, H., & Ding, G. (2013). Nucleate pool boiling heat transfer characteristics of refrigerant/ nanolubricant mixture with surfactant. International Journal of Refrigeration, 36(3), 1045–1055. https://doi.org/10.1016/j.ijrefrig.2012.12.015
  • Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., & Etsion, I. (2005). The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribology International, 38(3), 219–225. https://doi.org/10.1016/j.triboint.2004.08.004
  • Krishna Sabareesh, R., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO 2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems - An experimental investigation. International Journal of Refrigeration, 35(7), 1989–1996. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Kumar, V., Sinha, S. K., & Agarwal, A. K. (2019). Wear evaluation of engine piston rings coated with dual layer hard and soft coatings. Journal of Tribology, 141(3). https://doi.org/10.1115/1.4041762
  • Langlet, M., Burgos, M., Coutier, C., Jimenez, C., Morant, C., & Manso, M. (2001). Low temperature preparation of high refractive index and mechanically resistant sol-gel TiO2 films for multilayer antireflective coating applications. Journal of Sol-Gel Science and Technology, 22(1–2), 139–150. https://doi.org/10.1023/A:1011232807842
  • Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., & Choi, C. J. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11–12), 2651–2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
  • Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., & Kim, S. H. (2009). Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters, 35(2), 127–131. https://doi.org/10.1007/s11249-009-9441-7
  • Li, K. Y., Zhou, Z. F., Bello, I., Lee, C. S., & Lee, S. T. (2005). Study of tribological performance of ECR-CVD diamond-like carbon coatings on steel substrates Part 1. The effect of processing parameters and operating conditions. Wear, 258(10), 1577–1588. https://doi.org/10.1016/j.wear.2004.10.006
  • Li, S., & Bhushan, B. (2016). Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives. Applied Surface Science, 378, 308–319. https://doi.org/10.1016/j.apsusc.2016.03.220
  • Lin, J., Wei, R., Bitsis, D. C., & Lee, P. M. (2016). Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications. Surface and Coatings Technology, 298, 121–131. https://doi.org/10.1016/j.surfcoat.2016.04.061
  • Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., & Fan, R. (2004). Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters, 17(4), 961–966. https://doi.org/10.1007/s11249-004-8109-6
  • Ma, J., Mo, Y., & Bai, M. (2009). Effect of Ag nanoparticles additive on the tribological behavior of multialkylated cyclopentanes (MACs). Wear, 266(7–8), 627–631. https://doi.org/10.1016/j.wear.2008.08.006
  • Ma, S., Zheng, S., Cao, D., & Guo, H. (2010). Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive. Particuology, 8(5), 468–472. https://doi.org/10.1016/j.partic.2009.06.007
  • Mishra, A., & Prasad, R. (2014). Preparation and application of perovskite catalysts for diesel soot emissions control: An overview. Catalysis Reviews - Science and Engineering, Vol. 56, pp. 57–81. https://doi.org/10.1080/01614940.2014.866438
  • Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101(2), 239–253. https://doi.org/10.1093/toxsci/kfm240
  • Nabhan, A., Ghazaly, N. M., Mousa, H. M., & Rashed, A. (2020). Influence of TiO2 and SiO2 nanoparticles additives on the engine oil tribological properties: Experimental study at different operating conditions. International Journal of Advanced Science and Technology, 29(1), 845–855.
  • Nagashima, K., Kawa, T., & Tsuchiya, K. (2003). Indicated mean effective pressure measuring method using optical fiber pressure sensor. SAE Technical Papers. https://doi.org/10.4271/2003-01-2013
  • Nguyen, L. D. K., Sung, N. W., Lee, S. S., & Kim, H. S. (2011). Effects of split injection, oxygen enriched air and heavy EGR on soot emissions in a diesel engine. International Journal of Automotive Technology, 12(3), 339–350. https://doi.org/10.1007/s12239-011-0040-x
  • Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232. https://doi.org/10.1016/j.triboint.2012.10.024
  • Pahmi, A., Hisyam Basri, M., Mustaffa, M. E., Yaakob, Y., Sharudin, H., Ismail, N. I., & Talib, R. J. (2019). Intake pressure and brake mean effective pressure analysis on various intake manifold design. Journal of Physics: Conference Series, 1349(1). https://doi.org/10.1088/1742-6596/1349/1/012080
  • Pan, Q., & Zhang, X. (2010). Synthesis and tribological behavior of oil-soluble cu nanoparticles as additive in SF15W/40 lubricating oil. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 39(10), 1711–1714. https://doi.org/10.1016/s1875-5372(10)60129-4
  • Pecora, R. (2000). Dynamic light scattering measurement of nanometer particles in liquids. Journal of Nanoparticle Research, 2(2), 123–131. https://doi.org/10.1023/A:1010067107182
  • Peng, Y., Hu, Y., & Wang, H. (2007). Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribology Letters, 25(3), 247–253. https://doi.org/10.1007/s11249-006-9176-7
  • Podgornik, B., Vilhena, L. M., Sedlaček, M., Rek, Z., & Žun, I. (2012). Effectiveness and design of surface texturing for different lubrication regimes. Meccanica, 47(7), 1613–1622. https://doi.org/10.1007/s11012-012-9540-7
  • Ratoi, M., Niste, V. B., Alghawel, H., Suen, Y. F., & Nelson, K. (2014). The impact of organic friction modifiers on engine oil tribofilms. RSC Advances, 4(9), 4278–4285. https://doi.org/10.1039/c3ra46403b
  • Ronen, A., Etsion, I., & Kligerman, Y. (2001). Friction-reducing surface-texturing in reciprocating automotive components. Tribology Transactions, 44(3), 359–366. https://doi.org/10.1080/10402000108982468
  • Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q., & Cao, B. (2012). Synthesis of monodispersed ZnAl 2O 4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), 4305–4310. https://doi.org/10.1016/j.materresbull.2012.09.013
  • Strenge, K. (1995). Introduction to Modern Colloid Science. Zeitschrift Für Physikalische Chemie, 189(2), 277–278. https://doi.org/10.1524/zpch.1995.189.part_2.277a
  • Tao, X., Jiazheng, Z., & Kang, X. (1996). The ball-bearing effect of diamond nanoparticles as an oil additive. Journal of Physics D: Applied Physics, 29(11), 2932–2937. https://doi.org/10.1088/0022-3727/29/11/029
  • Taylor, C. M. (1998). Automobile engine tribology-design considerations for efficiency and durability. Wear, 221(1), 1–8. https://doi.org/10.1016/S0043-1648(98)00253-1
  • Tung, S. C., & Gao, H. (2003). Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels. Wear, 255(7–12), 1276–1285. https://doi.org/10.1016/S0043-1648(03)00240-0
  • Wan, Y., Chao, W., Liu, Y., & Zhang, J. (2011). Tribological performance of Fluoroalkylsilane modification of sol-gel TiO2 coating. Journal of Sol-Gel Science and Technology, 57(2), 193–197. https://doi.org/10.1007/s10971-010-2341-3
  • Wang, X. L., Yin, Y. L., Zhang, G. N., Wang, W. Y., & Zhao, K. K. (2013). Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel. Physics Procedia, 50, 466–472. https://doi.org/10.1016/j.phpro.2013.11.073
  • Wróblewski, P., & Koszalka, G. (2021). An Experimental Study on Frictional Losses of Coated Piston Rings with Symmetric and Asymmetric Geometry. SAE International Journal of Engines, 14(6). https://doi.org/10.4271/03-14-06-0051
  • Yang, G., Zhang, Z., Zhang, S., Yu, L., & Zhang, P. (2013). Synthesis and characterization of highly stable dispersions of copper nanoparticles by a novel one-pot method. Materials Research Bulletin, 48(4), 1716–1719. https://doi.org/10.1016/j.materresbull.2013.01.025
  • Yilmaz, A. C. (2020a). Performance evaluation of a refrigeration system using nanolubricant. Applied Nanoscience (Switzerland), 10(5), 1667–1678. https://doi.org/10.1007/s13204-020-01258-5
  • Yilmaz, A. C. (2020b). Tribological Enhancement Features of Various Nanoparticles as Engine Lubricant Additives: An Experimental Study. Arabian Journal for Science and Engineering, 45(2), 1125–1134. https://doi.org/10.1007/s13369-019-04243-5
  • Yin, B., Li, X., Fu, Y., & Yun, W. (2012). Effect of laser textured dimples on the lubrication performance of cylinder liner in diesel engine. Lubrication Science, 24(7), 293–312. https://doi.org/10.1002/ls.1185
  • YU, H. long, XU, Y., SHI, P. jing, XU, B. shi, WANG, X. li, & LIU, Q. (2008). Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China (English Edition), 18(3), 636–641. https://doi.org/10.1016/S1003-6326(08)60111-9
  • Zhang, S., Hu, L., Feng, D., & Wang, H. (2013). Anti-wear and friction-reduction mechanism of Sn and Fe nanoparticles as additives of multialkylated cyclopentanes under vacuum condition. Vacuum, 87, 75–80. https://doi.org/10.1016/j.vacuum.2012.07.009
  • Zin, V., Agresti, F., Barison, S., Colla, L., Mercadelli, E., Fabrizio, M., & Pagura, C. (2014). Tribological properties of engine oil with carbon nano-horns as nano-additives. Tribology Letters, 55(1), 45–53. https://doi.org/10.1007/s11249-014-0330-3
There are 57 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Nanotechnology
Journal Section Research Article
Authors

Ali Can Yılmaz 0000-0001-9832-9880

Project Number FBA-2021-14009
Publication Date December 15, 2022
Submission Date April 30, 2022
Published in Issue Year 2022

Cite

APA Yılmaz, A. C. (2022). Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant. Journal of Advanced Research in Natural and Applied Sciences, 8(4), 762-776. https://doi.org/10.28979/jarnas.1111459
AMA Yılmaz AC. Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant. JARNAS. December 2022;8(4):762-776. doi:10.28979/jarnas.1111459
Chicago Yılmaz, Ali Can. “Fretting Behavior of Piston Ring-Cylinder Liner Components of a Diesel Engine Running on TiO2 Nanolubricant”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 4 (December 2022): 762-76. https://doi.org/10.28979/jarnas.1111459.
EndNote Yılmaz AC (December 1, 2022) Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant. Journal of Advanced Research in Natural and Applied Sciences 8 4 762–776.
IEEE A. C. Yılmaz, “Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant”, JARNAS, vol. 8, no. 4, pp. 762–776, 2022, doi: 10.28979/jarnas.1111459.
ISNAD Yılmaz, Ali Can. “Fretting Behavior of Piston Ring-Cylinder Liner Components of a Diesel Engine Running on TiO2 Nanolubricant”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (December 2022), 762-776. https://doi.org/10.28979/jarnas.1111459.
JAMA Yılmaz AC. Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant. JARNAS. 2022;8:762–776.
MLA Yılmaz, Ali Can. “Fretting Behavior of Piston Ring-Cylinder Liner Components of a Diesel Engine Running on TiO2 Nanolubricant”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 4, 2022, pp. 762-76, doi:10.28979/jarnas.1111459.
Vancouver Yılmaz AC. Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant. JARNAS. 2022;8(4):762-76.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).