Research Article
BibTex RIS Cite

Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu ile Elektrik Üretimi

Year 2023, , 291 - 300, 30.06.2023
https://doi.org/10.28979/jarnas.1180458

Abstract

Organik içeriği yüksek atıkların enerji üretiminde kullanılması çevresel ve ekonomik açıdan tercih edilen bir yaklaşımdır. Bu çalışmada patates nişastası üretim prosesinden ol”uşan nişasta atığının mikrobiyal yakıt hücresinde elektrik üretim potansiyeli değerlendirilmiştir. Mikrobiyal yakıt hücresi olarak karbon kumaş elektrotların kullanıldığı çift odacıklı hücre kullanılmıştır. Nişasta atığının sulu karışımı ham, asidik koşullarda termal işlem (pH:2.5, 180 dk kaynatma) (AT) ve asidik koşullarda yüksek basınçta termal işlem (135 oC, pH 2.15, 2 atm, 60 dk) (ABT) gördükten sonra kullanılarak ön işlemin elektrik üretimine etkisi değerlendirilmiştir. Nişasta karışımı anot bölmesinde elektron verici substrat, oksijen ise katot bölmesinde elektron alıcısı olarak kullanılmıştır. 100 Ω dirence karşı voltaj eğrileri çıkarılmıştır. Polarizasyon eğrisi ile elde edilen maksimum güç yoğunlukları ham, AT ve ABT biyokütleleri ile işle-timlerde sırasıyla 1.894 mW/m2, 10.919 mW/m2 ve 8.926 mW/m2 olarak elde edilmiştir. Ham, AT ve ABT biyoküt-leleri ile işletilen MYHler için elde edilen iç dirençler ise sırasıyla, 9692 Ω, 1363 Ω ve 1760 Ω olarak belirlenmiştir. 2600 dk işletilen MYH denemeleri sonrası ham AT ve ABT işletimleri için KOİ giderim verimleri sırasıyla 40.27, 44.44 ve 52.46 olarak bulunurken, kolombik verimler sırasıyla 1.79, 5.03 ve 1.93 olarak belirlenmiştir.

References

  • Ali Yaqoob, A., Al-Zaqri, N., Suriaty Yaakop, A., & Umar, K. (2022). Potato waste as an effective source of electron generation and bioremediation of pollutant through benthic microbial fuel cell. Sustainable Energy Technologies and Assessments, 53. https://doi.org/10.1016/J.SETA.2022.102560
  • Bozkurt, B., Günkaya, Z., Özkan, A., Günkaya Göktuğ, & Banar, M. (2022). Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme. International Journal of Advances in Engineering and Pure Sciences, 34(1), 27–37. https://doi.org/10.7240/JEPS.918430
  • Elif Gulsen Akbay, H., Deniz, F., Ali Mazmanci, M., Deepanraj, B., & Dizge, N. (2022). Investigation of anaerobic degradability and biogas production of the starch and industrial sewage mixtures. Sustainable Energy Technologies and Assessments, 52, 102054. https://doi.org/10.1016/J.SETA.2022.102054
  • Gupte, A. P., Basaglia, M., Casella, S., & Favaro, L. (2022). Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives. Renewable and Sustainable Energy Reviews, 167, 112673. https://doi.org/10.1016/J.RSER.2022.112673
  • Hoang, A. T., Nižetić, S., Ng, K. H., Papadopoulos, A. M., Le, A. T., Kumar, S., Hadiyanto, H., & Pham, V. V. (2022). Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere, 287, 132285. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132285
  • Jia, Y. H., Tran, H. T., Kim, D. H., Oh, S. J., Park, D. H., Zhang, R. H., & Ahn, D. H. (2008). Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess and Biosystems Engineering, 31(4), 315–321. https://doi.org/10.1007/S00449-007-0164-6/FIGURES/8
  • Kim, I. S., Chae, K.-J., Choi, M.-J., & Verstraete, W. (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environ. Eng. Res, 13(2), 51–65.
  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology 40 (17), 5181–5192. https://doi.org/10.1021/es0605016
  • Lu, N., Zhou, S. gui, Zhuang, L., Zhang, J. tao, & Ni, J. ren. (2009). Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochemical Engineering Journal, 43(3), 246–251. https://doi.org/10.1016/J.BEJ.2008.10.005
  • Shimoyama, T., Komukai, S., Yamazawa, A., Ueno, Y., Logan, B. E., & Watanabe, K. (2008). Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Applied Microbiology and Biotechnology, 80(2), 325–330. https://doi.org/10.1007/S00253-008-1516-0/TABLES/3
  • Wilberforce, T., Abdelkareem, M. A., Elsaid, K., Olabi, A. G., & Sayed, E. T. (2022). Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy, 240, 122478. https://doi.org/10.1016/J.ENERGY.2021.122478
  • Xiao, B., Han, Y., Liu, X., & Liu, J. (2014). Relationship of methane and electricity production in two-chamber microbial fuel cell using sewage sludge as substrate. International Journal of Hydrogen Energy, 39(29), 16419–16425. https://doi.org/10.1016/J.IJHYDENE.2014.08.024
  • Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/J.EGYR.2019.08.007
  • Ye, F., Xiao, L., Liang, Y., Zhou, Y., & Zhao, G. (2019). Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules. Carbohydrate Polymers, 213, 79–88. https://doi.org/10.1016/J.CARBPOL.2019.02.077
  • Zafar, H., Peleato, N., & Roberts, D. (2022). A review of the role of pre-treatment on the treatment of food waste using microbial fuel cells. Environmental Technology Reviews, 11(1), 72–90. https://doi.org/10.1080/21622515.2022.2058426
  • Zhang, H., Chao, B., Gao, X., Cao, X., & Li, X. (2022). Effect of starch-derived organic acids on the removal of polycyclic aromatic hydrocarbons in an aquaculture-sediment microbial fuel cell. Journal of Environmental Management, 311, 114783. https://doi.org/10.1016/J.JENVMAN.2022.114783

Electricity Generation by Oxidation of Starch-Containing Waste in Microbial Fuel Cell

Year 2023, , 291 - 300, 30.06.2023
https://doi.org/10.28979/jarnas.1180458

Abstract

The use of wastes with high organic content in energy production is an environmentally and economically preferred approach. In this study, the electricity generation potential of the starch waste generated from the potato starch production process in the microbial fuel cell was evaluated. A dual-chamber cell using carbon cloth electrodes was used as a microbial fuel cell. The effect of pre-treatment on electricity generation was evaluated by using the slurry of starch waste after raw and pre-treatment (thermal treatment (AT) in acidic conditions and high-pressure thermal treatment (ABT) in acidic conditions. The starch mixture was used as an electron donor substrate in the anode compartment, and oxygen as an electron-donating substrate in the cathode compartment. Voltage curves against 100 Ω resistance are plotted. The maximum power densities obtained by the polarization were obtained as 1.894 mW/m2, 10.919 mW/m2 and 8.926 mW/m2 in the operations with raw, AT, and ABT biomass, respectively. The internal re-sistances obtained for MFCs operated with raw, AT and ABT biomass were determined as 9692 Ω, 1363 Ω and 1760 Ω, respectively. The COD removal efficiencies for the raw AT and ABT operations after the 2600 min run MFC trials were found to be 40.27, 44.44 and 52.46, respectively, while the coulombic efficiencies were determined as 1.79, 5.03 and 1.93, respectively.

References

  • Ali Yaqoob, A., Al-Zaqri, N., Suriaty Yaakop, A., & Umar, K. (2022). Potato waste as an effective source of electron generation and bioremediation of pollutant through benthic microbial fuel cell. Sustainable Energy Technologies and Assessments, 53. https://doi.org/10.1016/J.SETA.2022.102560
  • Bozkurt, B., Günkaya, Z., Özkan, A., Günkaya Göktuğ, & Banar, M. (2022). Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme. International Journal of Advances in Engineering and Pure Sciences, 34(1), 27–37. https://doi.org/10.7240/JEPS.918430
  • Elif Gulsen Akbay, H., Deniz, F., Ali Mazmanci, M., Deepanraj, B., & Dizge, N. (2022). Investigation of anaerobic degradability and biogas production of the starch and industrial sewage mixtures. Sustainable Energy Technologies and Assessments, 52, 102054. https://doi.org/10.1016/J.SETA.2022.102054
  • Gupte, A. P., Basaglia, M., Casella, S., & Favaro, L. (2022). Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives. Renewable and Sustainable Energy Reviews, 167, 112673. https://doi.org/10.1016/J.RSER.2022.112673
  • Hoang, A. T., Nižetić, S., Ng, K. H., Papadopoulos, A. M., Le, A. T., Kumar, S., Hadiyanto, H., & Pham, V. V. (2022). Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere, 287, 132285. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132285
  • Jia, Y. H., Tran, H. T., Kim, D. H., Oh, S. J., Park, D. H., Zhang, R. H., & Ahn, D. H. (2008). Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess and Biosystems Engineering, 31(4), 315–321. https://doi.org/10.1007/S00449-007-0164-6/FIGURES/8
  • Kim, I. S., Chae, K.-J., Choi, M.-J., & Verstraete, W. (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation. Environ. Eng. Res, 13(2), 51–65.
  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology 40 (17), 5181–5192. https://doi.org/10.1021/es0605016
  • Lu, N., Zhou, S. gui, Zhuang, L., Zhang, J. tao, & Ni, J. ren. (2009). Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochemical Engineering Journal, 43(3), 246–251. https://doi.org/10.1016/J.BEJ.2008.10.005
  • Shimoyama, T., Komukai, S., Yamazawa, A., Ueno, Y., Logan, B. E., & Watanabe, K. (2008). Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Applied Microbiology and Biotechnology, 80(2), 325–330. https://doi.org/10.1007/S00253-008-1516-0/TABLES/3
  • Wilberforce, T., Abdelkareem, M. A., Elsaid, K., Olabi, A. G., & Sayed, E. T. (2022). Role of carbon-based nanomaterials in improving the performance of microbial fuel cells. Energy, 240, 122478. https://doi.org/10.1016/J.ENERGY.2021.122478
  • Xiao, B., Han, Y., Liu, X., & Liu, J. (2014). Relationship of methane and electricity production in two-chamber microbial fuel cell using sewage sludge as substrate. International Journal of Hydrogen Energy, 39(29), 16419–16425. https://doi.org/10.1016/J.IJHYDENE.2014.08.024
  • Yasri, N., Roberts, E. P. L., & Gunasekaran, S. (2019). The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 5, 1116–1136. https://doi.org/10.1016/J.EGYR.2019.08.007
  • Ye, F., Xiao, L., Liang, Y., Zhou, Y., & Zhao, G. (2019). Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules. Carbohydrate Polymers, 213, 79–88. https://doi.org/10.1016/J.CARBPOL.2019.02.077
  • Zafar, H., Peleato, N., & Roberts, D. (2022). A review of the role of pre-treatment on the treatment of food waste using microbial fuel cells. Environmental Technology Reviews, 11(1), 72–90. https://doi.org/10.1080/21622515.2022.2058426
  • Zhang, H., Chao, B., Gao, X., Cao, X., & Li, X. (2022). Effect of starch-derived organic acids on the removal of polycyclic aromatic hydrocarbons in an aquaculture-sediment microbial fuel cell. Journal of Environmental Management, 311, 114783. https://doi.org/10.1016/J.JENVMAN.2022.114783
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Article
Authors

Elif Durna Pişkin 0000-0003-4478-2967

Nevim Genç 0000-0002-6185-1090

Early Pub Date June 21, 2023
Publication Date June 30, 2023
Submission Date September 26, 2022
Published in Issue Year 2023

Cite

APA Durna Pişkin, E., & Genç, N. (2023). Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu ile Elektrik Üretimi. Journal of Advanced Research in Natural and Applied Sciences, 9(2), 291-300. https://doi.org/10.28979/jarnas.1180458
AMA Durna Pişkin E, Genç N. Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu ile Elektrik Üretimi. JARNAS. June 2023;9(2):291-300. doi:10.28979/jarnas.1180458
Chicago Durna Pişkin, Elif, and Nevim Genç. “Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu Ile Elektrik Üretimi”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 2 (June 2023): 291-300. https://doi.org/10.28979/jarnas.1180458.
EndNote Durna Pişkin E, Genç N (June 1, 2023) Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu ile Elektrik Üretimi. Journal of Advanced Research in Natural and Applied Sciences 9 2 291–300.
IEEE E. Durna Pişkin and N. Genç, “Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu ile Elektrik Üretimi”, JARNAS, vol. 9, no. 2, pp. 291–300, 2023, doi: 10.28979/jarnas.1180458.
ISNAD Durna Pişkin, Elif - Genç, Nevim. “Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu Ile Elektrik Üretimi”. Journal of Advanced Research in Natural and Applied Sciences 9/2 (June 2023), 291-300. https://doi.org/10.28979/jarnas.1180458.
JAMA Durna Pişkin E, Genç N. Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu ile Elektrik Üretimi. JARNAS. 2023;9:291–300.
MLA Durna Pişkin, Elif and Nevim Genç. “Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu Ile Elektrik Üretimi”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 2, 2023, pp. 291-00, doi:10.28979/jarnas.1180458.
Vancouver Durna Pişkin E, Genç N. Mikrobiyal Yakıt Hücresinde Nişasta İçerikli Atığın Oksidasyonu ile Elektrik Üretimi. JARNAS. 2023;9(2):291-300.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).