Research Article
BibTex RIS Cite

Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique

Year 2023, , 710 - 718, 20.09.2023
https://doi.org/10.28979/jarnas.1278059

Abstract

In this work, Zn1-xCuxO nanoparticles (x= 0.025, x=0.050, and x=0.075) were synthesized by co-precipitation technique using chemical bath deposition wastes of Cu:ZnO thin films. The XRD evaluation showed that the well-crystalline hexagonal wurtzite ZnO indexed peaks. Average crystallite sizes were found to be around 35.6-42.9 nm range by using the Debye-Scherrer equation. Surface morphology results showed that dense layer of nano-roses and fewer nanorods formations in low Cu-concentrated (x=0.025 and x=0.050) samples. The optical absorption edge shifted slightly to the higher wavelength from 350 nm to 375 nm with decreasing copper concentration, as mentioned the blue shift. Blue shift might be caused an increase in the optical band gap from 3.14 eV to 3.28 eV due to the decrease in Cu concentration.

References

  • Anitha, S., & Muthukumaran, S. (2020). Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Materials Science and Engine-ering: C, 108, 110387. doi:10.1016/j.msec.2019.110387
  • Bordbar, M. , Khodadadi1, B., Mollatayefe, N., Yeganeh A., (2017). Influence of metal (Ag, Cd, Cu)-doping on the optical properties of ZnO nanopowder: Variation of band gap Journal of Applied Che-mistry, 8 (2013) 43-47
  • Chu, V. B., Siopa, D., Debot, A., Adeleye, D., Sood, M., Lomuscio, A., … Dale, P. J. (2021). Waste- and Cd-Free Inkjet-Printed Zn(O,S) Buffer for Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 13(11), 13009–13021. doi:10.1021/acsami.0c16860
  • Das, B. K., Das, T., Parashar, K., Thirumurugan, A., & Parashar, S. K. S. (2017). Structural, bandgap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical allo-ying. Journal of Materials Science: Materials in Electronics, 28, 15127-15134.
  • Debanath, M. K., & Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nano particles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119. doi:10.1016/j.matlet.2013.08.069
  • Drummer, S., Madzimbamuto T., and Chowdhury M. (2021). Green Synthesis of Transition-Metal Nanopar ticles and Their Oxides: A Review Materials 14, no. 11: 2700. https://doi.org/10.3390/ma14112700 Gahlaut, U.P.S., Kumar V., Pandey R.K., & Goswami Y.C. (2016) Highly luminescent ultra-small Cu doped ZnO nanostructures grown by ultrasonicated sol-gel route, Optik 127 4292–4295.
  • Istrate, AI., Mihalache, I., Romanitan, C. et al. (2021). Copper doping effect on the properties in ZnO films deposited by sol–gel. J Mater Sci: Mater Electron 32, 4021–4033 (2021). https://doi.org/10.1007/s10854-020-05144-2
  • Kamarulzaman, N., Kasim, M.F. & Rusdi, R. (2015). Band Gap Narrowing and Widening of ZnO Na-nost ructures and Doped Materials. Nanoscale Res Lett 10, 346. https://doi.org/10.1186/s11671-015- 1034-9
  • Kim, C. E., Moon, P., Kim, S., Myoung, J.-M., Jang, H. W., Bang, J., & Yun, I. (2010). Effect of car-rier concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films, 518(22), 6304–6307. doi:10.1016/j.tsf.2010.03.042
  • Labhane, P. , Huse, V. , Patle, L. , Chaudhari, A. and Sonawane, G. (2015) Synthesis of Cu Doped ZnO Na noparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study. Journal of Materials Science and Chemical Engineering, 3, 39-51. doi: 10.4236/msce.2015.37005.
  • Liu, W. L., & Zhang, Y. F. (2018). Blueshift of absorption edge and photoluminescence in Al doped ZnO thin films. Integrated Ferroelectrics, 188(1), 112–120. doi:10.1080/10584587.2018.1454222
  • Ma, Z., Ren, F., Ming, X., Long, Y., & Volinsky, A. A. (2019). Cu-Doped ZnO Electronic Structure and Optical Properties Studied by First-Principles Calculations and Experiments. Materials, 12(1). doi:10.3390/ma12010196
  • Malinowska, B., Rakib, M. & Durand, G. (2002). Cadmium recovery and recycling from chemical bath de position of CdS thin layers. Prog. Photovolt. Res. Appl. 10, 215–228. https://doi.org/10.1002/pip.402.
  • Naik, E. I., Naik, H. S. B., Swamy, B. E. K., Viswanath, R., Gowda, I. K. S., Prabhakara, M. C., & Chetan kumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, opti-cal, electrochemical properties and their applications in efficient detection of latent fingerp-rints. Chemical Data Collections, 33, 100671. doi:10.1016/j.cdc.2021.100671
  • Raji, R., & Gopchandran, K. G. (2017). ZnO:Cu nanorods with visible luminescence: copper induced defect levels and its luminescence dynamics. Materials Research Express, 4(2), 025002. doi:10.1088/2053-1591/aa5762
  • Sarf, F., Karaduman E.I., Yakar, E., & Acar, S., (2021). Substrate critical effect on the structural and H2 Gas sensing characteristics of solution-processed Zn0.075Cu0.025O films, Mater. Res. Exp-ress, 8, 126401, DOI: 10.1088/2053-1591/ac3f09.
  • Sarf, F., & Kızıl, H., (2021). Defect Emission Energy and Particle Size Effects in Fe:ZnO Nanospheres Used in Li-ion Batteries as Anode. Journal of Electronic Materials , vol.10, 111.
  • Vasudevan, J;, Johnson, S; Jeyakumar, B; et al, Materials Today: Proceedings, 2021, 12-19
  • Vasudevan, J., Johnson Jeyakumar, S., Arunkumar, B., Jothibas, M., Muthuvel, A., & Vijayalakshmi, S. (2022). Optical and magnetic investigation of Cu doped ZnO nanoparticles synthesized by so-lid state method. Materials Today: Proceedings, 48, 438–442. doi:10.1016/j.matpr.2020.12.429
  • Wang, L.(2019). European Patent Application Bulletin 26, 26.06.2019 Wang, D.F., Zhang, T.,( 2009). Study on the defects of ZnO nanowire, Solid State Communications, 149:1947-1949
Year 2023, , 710 - 718, 20.09.2023
https://doi.org/10.28979/jarnas.1278059

Abstract

References

  • Anitha, S., & Muthukumaran, S. (2020). Structural, optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Materials Science and Engine-ering: C, 108, 110387. doi:10.1016/j.msec.2019.110387
  • Bordbar, M. , Khodadadi1, B., Mollatayefe, N., Yeganeh A., (2017). Influence of metal (Ag, Cd, Cu)-doping on the optical properties of ZnO nanopowder: Variation of band gap Journal of Applied Che-mistry, 8 (2013) 43-47
  • Chu, V. B., Siopa, D., Debot, A., Adeleye, D., Sood, M., Lomuscio, A., … Dale, P. J. (2021). Waste- and Cd-Free Inkjet-Printed Zn(O,S) Buffer for Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 13(11), 13009–13021. doi:10.1021/acsami.0c16860
  • Das, B. K., Das, T., Parashar, K., Thirumurugan, A., & Parashar, S. K. S. (2017). Structural, bandgap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical allo-ying. Journal of Materials Science: Materials in Electronics, 28, 15127-15134.
  • Debanath, M. K., & Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nano particles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119. doi:10.1016/j.matlet.2013.08.069
  • Drummer, S., Madzimbamuto T., and Chowdhury M. (2021). Green Synthesis of Transition-Metal Nanopar ticles and Their Oxides: A Review Materials 14, no. 11: 2700. https://doi.org/10.3390/ma14112700 Gahlaut, U.P.S., Kumar V., Pandey R.K., & Goswami Y.C. (2016) Highly luminescent ultra-small Cu doped ZnO nanostructures grown by ultrasonicated sol-gel route, Optik 127 4292–4295.
  • Istrate, AI., Mihalache, I., Romanitan, C. et al. (2021). Copper doping effect on the properties in ZnO films deposited by sol–gel. J Mater Sci: Mater Electron 32, 4021–4033 (2021). https://doi.org/10.1007/s10854-020-05144-2
  • Kamarulzaman, N., Kasim, M.F. & Rusdi, R. (2015). Band Gap Narrowing and Widening of ZnO Na-nost ructures and Doped Materials. Nanoscale Res Lett 10, 346. https://doi.org/10.1186/s11671-015- 1034-9
  • Kim, C. E., Moon, P., Kim, S., Myoung, J.-M., Jang, H. W., Bang, J., & Yun, I. (2010). Effect of car-rier concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films, 518(22), 6304–6307. doi:10.1016/j.tsf.2010.03.042
  • Labhane, P. , Huse, V. , Patle, L. , Chaudhari, A. and Sonawane, G. (2015) Synthesis of Cu Doped ZnO Na noparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study. Journal of Materials Science and Chemical Engineering, 3, 39-51. doi: 10.4236/msce.2015.37005.
  • Liu, W. L., & Zhang, Y. F. (2018). Blueshift of absorption edge and photoluminescence in Al doped ZnO thin films. Integrated Ferroelectrics, 188(1), 112–120. doi:10.1080/10584587.2018.1454222
  • Ma, Z., Ren, F., Ming, X., Long, Y., & Volinsky, A. A. (2019). Cu-Doped ZnO Electronic Structure and Optical Properties Studied by First-Principles Calculations and Experiments. Materials, 12(1). doi:10.3390/ma12010196
  • Malinowska, B., Rakib, M. & Durand, G. (2002). Cadmium recovery and recycling from chemical bath de position of CdS thin layers. Prog. Photovolt. Res. Appl. 10, 215–228. https://doi.org/10.1002/pip.402.
  • Naik, E. I., Naik, H. S. B., Swamy, B. E. K., Viswanath, R., Gowda, I. K. S., Prabhakara, M. C., & Chetan kumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, opti-cal, electrochemical properties and their applications in efficient detection of latent fingerp-rints. Chemical Data Collections, 33, 100671. doi:10.1016/j.cdc.2021.100671
  • Raji, R., & Gopchandran, K. G. (2017). ZnO:Cu nanorods with visible luminescence: copper induced defect levels and its luminescence dynamics. Materials Research Express, 4(2), 025002. doi:10.1088/2053-1591/aa5762
  • Sarf, F., Karaduman E.I., Yakar, E., & Acar, S., (2021). Substrate critical effect on the structural and H2 Gas sensing characteristics of solution-processed Zn0.075Cu0.025O films, Mater. Res. Exp-ress, 8, 126401, DOI: 10.1088/2053-1591/ac3f09.
  • Sarf, F., & Kızıl, H., (2021). Defect Emission Energy and Particle Size Effects in Fe:ZnO Nanospheres Used in Li-ion Batteries as Anode. Journal of Electronic Materials , vol.10, 111.
  • Vasudevan, J;, Johnson, S; Jeyakumar, B; et al, Materials Today: Proceedings, 2021, 12-19
  • Vasudevan, J., Johnson Jeyakumar, S., Arunkumar, B., Jothibas, M., Muthuvel, A., & Vijayalakshmi, S. (2022). Optical and magnetic investigation of Cu doped ZnO nanoparticles synthesized by so-lid state method. Materials Today: Proceedings, 48, 438–442. doi:10.1016/j.matpr.2020.12.429
  • Wang, L.(2019). European Patent Application Bulletin 26, 26.06.2019 Wang, D.F., Zhang, T.,( 2009). Study on the defects of ZnO nanowire, Solid State Communications, 149:1947-1949
There are 20 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Plating Technology, Nanotechnology
Journal Section Research Article
Authors

Emin Yakar 0000-0001-7747-953X

Early Pub Date September 19, 2023
Publication Date September 20, 2023
Submission Date April 6, 2023
Published in Issue Year 2023

Cite

APA Yakar, E. (2023). Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique. Journal of Advanced Research in Natural and Applied Sciences, 9(3), 710-718. https://doi.org/10.28979/jarnas.1278059
AMA Yakar E. Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique. JARNAS. September 2023;9(3):710-718. doi:10.28979/jarnas.1278059
Chicago Yakar, Emin. “Determination of Structural and Optical Properties of Zn1-XCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 3 (September 2023): 710-18. https://doi.org/10.28979/jarnas.1278059.
EndNote Yakar E (September 1, 2023) Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique. Journal of Advanced Research in Natural and Applied Sciences 9 3 710–718.
IEEE E. Yakar, “Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique”, JARNAS, vol. 9, no. 3, pp. 710–718, 2023, doi: 10.28979/jarnas.1278059.
ISNAD Yakar, Emin. “Determination of Structural and Optical Properties of Zn1-XCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique”. Journal of Advanced Research in Natural and Applied Sciences 9/3 (September 2023), 710-718. https://doi.org/10.28979/jarnas.1278059.
JAMA Yakar E. Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique. JARNAS. 2023;9:710–718.
MLA Yakar, Emin. “Determination of Structural and Optical Properties of Zn1-XCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 3, 2023, pp. 710-8, doi:10.28979/jarnas.1278059.
Vancouver Yakar E. Determination of Structural and Optical Properties of Zn1-xCuxO Nanoparticles by Chemical Bath Deposition Waste Recovery Technique. JARNAS. 2023;9(3):710-8.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).