Research Article
BibTex RIS Cite

Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties

Year 2024, , 329 - 336, 25.06.2024
https://doi.org/10.28979/jarnas.1405595

Abstract

Transition metal oxides, particularly copper oxides, have garnered significant attention due to their intriguing photochemical, photomagnetic, photo-thermal, and photoconductive properties. Among these, CuO stands out as a p-type semiconductor having narrow bandgap energy ranges from 1.2 to 2 eV, finding versatile applications such as gas sensing, magnetic storage, solar energy conversion, photocatalysis, supercapacitors, field-emission emitters, and optical switches. Additionally, it serves as a crucial component in materials designed for lithium-ion electrodes. In this study, five different CuO nanoparticles were synthesized by simple and cost-effective hydrothermal method with various reaction temperatures and times in a teflon lined stainless steel autoclave. Copper (II) chloride dihydrate was used as copper source in this process. Various characterization techniques were conducted including X-ray powder diffraction (XRD), Raman spectroscopy, and transmitting electron microscopy (TEM). The effect of temperature and time on synthesis process was characterized and discussed. TEM images show that particle size of CuO increase with the temperature and reaction time. First reaction had the smallest particle sizes (mostly around 9-11 nm). This can be attributed to its lowest reaction temperature and shortest reaction time. For the other reactions, two of them accumulate around 19-35 nm and two around 27-45 nm range. However, the rise in the particle’s diameters is not directly proportional to temperature and time. As a result, CuO nanoparticles have been produced with simple method for the market. It can be produced in large quantities for heat exchangers, gas sensing, magnetic storage, solar energy conversion, photocatalysts, supercapacitors, etc.

Supporting Institution

Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit

Project Number

FBA-2022-4212

Thanks

This work was supported by Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit, Project number: FBA-2022-4212. This study was presented at the UKMK-15 national congress.

References

  • C. Xu, Y. Liu, G. Xu, G. Wang, Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor, Materials Research Bulletin 37 (14) (2002) 2365-2372.
  • A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route, Physica B: Condensed Matter 406 (2) (2011) 144–149.
  • Y. Q. Wang, D. Wang, B. Yan, Y. Chen, C. Song, Fabrication of diverse CuO nanostructures via hydrothermal method and their photocatalytic properties, Journal of Materials Science-Materials in Electronics 27 (7) (2016) 6918–6924.
  • M. -J. Song, S. W. Hwang, D. Whang, Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection, Talanta 80 (5) (2010) 1648–1652.
  • T. H. Nguyen, T. L. Nguyen, T. D. Thuy Ung, Q. L. Nguyen, Synthesis and characterization of nano-CuO and CuO/TiO2 photocatalysts, Advances in Natural Sciences: Nanoscience and Nanotechnology 4 (2) (2013) 025002 6 pages.
  • C. L. Carnes, J. Stipp, K. J. Klabunde, J. Bonevich, Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide, Langmuir 18 (4) (2002) 1352–1359.
  • W. Wang, Y. Zhan, X. Wang, Y. Liu, C. Zheng, G. Wang, Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant, Materials Research Bulletin 37 (6) (2002) 1093–1100.
  • J. Pike, S. W. Chan, F. Zhang, X. Wang, J. Hanson, Formation of stable Cu2O from reduction of CuO nanoparticles, Applied Catalysis A: General 303 (2) (2006) 273–277.
  • K. Zhou, R. Wang, B. Xu, Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes, Nanotechnology 17 (15) (2006) 3939 5 pages.
  • J. T. Chen, F. Zhang, J. Wang, G. A. Zhang, B. B. Miao, X. Y. Fan, D. Yan, P. X. Yan, CuO nanowires synthesized by thermal oxidation route, Journal of Alloys and Compounds 454 (1-2) (2008) 268–273.
  • J. Zhu, H. Bi, Y. Wang, X. Wang, L. Lu, Synthesis of flower-like CuO nanostructures via a simple hydrolysis route, Materials Letters 61 (30) (2007) 5236–5238.
  • X. Tang, L. Ren, L. Sun, W. Tian, M. Cao, C. Hu, A solvothermal route to Cu2O nanocubes and Cu nanoparticle, Chemical Research in Chinese Universities 22 (5) (2006) 547–551.
  • D. Han, H. Yang, C. Zhu, F. Wang, Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles Powder Technology 185 (3) (2008) 286–290.
  • P. Basnet, S. Chatterjee, Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review, Nano-Structures & Nano-Objects 22 (2020) 100426.
  • Y. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials, Journal of Nanomaterials 2020 (2020) Article ID 8917013 3 pages.
  • Q. Yang, Z. Lu, J. Liu, X. Lei, Z. Chang, L. Luo, X. Sun, Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts, Progress in Natural Science: Materials International 23 (4) (2013) 351–366.
  • W. Shi, S. Song, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures, Chemical Society Reviews 42 (13) (2013) 5714–5743.
  • L. L Feng, R. Wang, Y. Zhang, S. Ji, Y. Chuan, W. Zhang, In situ XRD observation of CuO anode phase conversion in lithium-ion batteries, Journal of Materials Science 54 (2) (2019) 1520–1528.
  • S. Al-Amri, M. S. Ansari, S. Rafique, M. Aldhahri, S. Rahimuddin, A. Azam, A. Memic, Ni doped CuO nanoparticles: Structural and optical characterizations, Current Nanoscience 11 (2) (2015) 191–197.
  • V. K. Gupta, R. Chandra, I. Tyagi, M. Verma, Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications, Journal of Colloid and Interface Science 478 (2016) 54–62.
  • Q. Yu, H. Huang, R. Chen, P. Wang, H. Yang, M. Gao, X. Peng, Z. Ye, Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties, Nanoscale 4 (8) (2012) 2613–2620.
  • S. Sabbaghi, H. Orojlou, M. R. Parvizi, R. Saboori, M. Sahooli, Effect of temperature and time on morphology of CuO nanoparticle during synthesis, International Journal of Nano Dimension 3 (1) (2012) 69–73.
  • F. Janene, H. Dhaouadi, L. Arfaoui, N. Etteyeb, D. Touati, Nanoplate-like CuO: hydrothermal synthesis, characterization, and electrochemical properties, Ionics 22 (8) (2016) 1395–1403.
  • M. Outokesh, M. Hosseinpour, S. J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal synthesis of CuO nanoparticles: Study on effects of operational conditions on yield, purity, and size of the nanoparticles, Industrial & Engineering Chemistry Research 50 (6) (2011) 3540–3554.
  • R. A. Köppel, C. Stöcker, A. Baiker, Copper-and silver–zirconia aerogels: preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide, Journal of Catalysis, 179 (2) (1998) 515–527.
  • M. P. Neupane, Y. K. Kim, I. S. Park, K. A. Kim, M. H. Lee, T. S. Bae, Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles, Surface and Interface Analysis 41 (3) (2009) 259–263.
  • T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Applied Surface Science 311 (2014) 602–608.
Year 2024, , 329 - 336, 25.06.2024
https://doi.org/10.28979/jarnas.1405595

Abstract

Project Number

FBA-2022-4212

References

  • C. Xu, Y. Liu, G. Xu, G. Wang, Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor, Materials Research Bulletin 37 (14) (2002) 2365-2372.
  • A. Aslani, V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route, Physica B: Condensed Matter 406 (2) (2011) 144–149.
  • Y. Q. Wang, D. Wang, B. Yan, Y. Chen, C. Song, Fabrication of diverse CuO nanostructures via hydrothermal method and their photocatalytic properties, Journal of Materials Science-Materials in Electronics 27 (7) (2016) 6918–6924.
  • M. -J. Song, S. W. Hwang, D. Whang, Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection, Talanta 80 (5) (2010) 1648–1652.
  • T. H. Nguyen, T. L. Nguyen, T. D. Thuy Ung, Q. L. Nguyen, Synthesis and characterization of nano-CuO and CuO/TiO2 photocatalysts, Advances in Natural Sciences: Nanoscience and Nanotechnology 4 (2) (2013) 025002 6 pages.
  • C. L. Carnes, J. Stipp, K. J. Klabunde, J. Bonevich, Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide, Langmuir 18 (4) (2002) 1352–1359.
  • W. Wang, Y. Zhan, X. Wang, Y. Liu, C. Zheng, G. Wang, Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant, Materials Research Bulletin 37 (6) (2002) 1093–1100.
  • J. Pike, S. W. Chan, F. Zhang, X. Wang, J. Hanson, Formation of stable Cu2O from reduction of CuO nanoparticles, Applied Catalysis A: General 303 (2) (2006) 273–277.
  • K. Zhou, R. Wang, B. Xu, Y. Li, Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes, Nanotechnology 17 (15) (2006) 3939 5 pages.
  • J. T. Chen, F. Zhang, J. Wang, G. A. Zhang, B. B. Miao, X. Y. Fan, D. Yan, P. X. Yan, CuO nanowires synthesized by thermal oxidation route, Journal of Alloys and Compounds 454 (1-2) (2008) 268–273.
  • J. Zhu, H. Bi, Y. Wang, X. Wang, L. Lu, Synthesis of flower-like CuO nanostructures via a simple hydrolysis route, Materials Letters 61 (30) (2007) 5236–5238.
  • X. Tang, L. Ren, L. Sun, W. Tian, M. Cao, C. Hu, A solvothermal route to Cu2O nanocubes and Cu nanoparticle, Chemical Research in Chinese Universities 22 (5) (2006) 547–551.
  • D. Han, H. Yang, C. Zhu, F. Wang, Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles Powder Technology 185 (3) (2008) 286–290.
  • P. Basnet, S. Chatterjee, Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review, Nano-Structures & Nano-Objects 22 (2020) 100426.
  • Y. X. Gan, A. H. Jayatissa, Z. Yu, X. Chen, M. Li, Hydrothermal synthesis of nanomaterials, Journal of Nanomaterials 2020 (2020) Article ID 8917013 3 pages.
  • Q. Yang, Z. Lu, J. Liu, X. Lei, Z. Chang, L. Luo, X. Sun, Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts, Progress in Natural Science: Materials International 23 (4) (2013) 351–366.
  • W. Shi, S. Song, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures, Chemical Society Reviews 42 (13) (2013) 5714–5743.
  • L. L Feng, R. Wang, Y. Zhang, S. Ji, Y. Chuan, W. Zhang, In situ XRD observation of CuO anode phase conversion in lithium-ion batteries, Journal of Materials Science 54 (2) (2019) 1520–1528.
  • S. Al-Amri, M. S. Ansari, S. Rafique, M. Aldhahri, S. Rahimuddin, A. Azam, A. Memic, Ni doped CuO nanoparticles: Structural and optical characterizations, Current Nanoscience 11 (2) (2015) 191–197.
  • V. K. Gupta, R. Chandra, I. Tyagi, M. Verma, Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications, Journal of Colloid and Interface Science 478 (2016) 54–62.
  • Q. Yu, H. Huang, R. Chen, P. Wang, H. Yang, M. Gao, X. Peng, Z. Ye, Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties, Nanoscale 4 (8) (2012) 2613–2620.
  • S. Sabbaghi, H. Orojlou, M. R. Parvizi, R. Saboori, M. Sahooli, Effect of temperature and time on morphology of CuO nanoparticle during synthesis, International Journal of Nano Dimension 3 (1) (2012) 69–73.
  • F. Janene, H. Dhaouadi, L. Arfaoui, N. Etteyeb, D. Touati, Nanoplate-like CuO: hydrothermal synthesis, characterization, and electrochemical properties, Ionics 22 (8) (2016) 1395–1403.
  • M. Outokesh, M. Hosseinpour, S. J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal synthesis of CuO nanoparticles: Study on effects of operational conditions on yield, purity, and size of the nanoparticles, Industrial & Engineering Chemistry Research 50 (6) (2011) 3540–3554.
  • R. A. Köppel, C. Stöcker, A. Baiker, Copper-and silver–zirconia aerogels: preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide, Journal of Catalysis, 179 (2) (1998) 515–527.
  • M. P. Neupane, Y. K. Kim, I. S. Park, K. A. Kim, M. H. Lee, T. S. Bae, Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles, Surface and Interface Analysis 41 (3) (2009) 259–263.
  • T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Applied Surface Science 311 (2014) 602–608.
There are 27 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Gürkan Akarken 0000-0002-9265-5156

Uğur Cengiz 0000-0002-0400-3351

Tijen Ennil Bektaş 0000-0001-9180-3623

Project Number FBA-2022-4212
Early Pub Date June 25, 2024
Publication Date June 25, 2024
Submission Date December 15, 2023
Acceptance Date February 2, 2024
Published in Issue Year 2024

Cite

APA Akarken, G., Cengiz, U., & Bektaş, T. E. (2024). Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties. Journal of Advanced Research in Natural and Applied Sciences, 10(2), 329-336. https://doi.org/10.28979/jarnas.1405595
AMA Akarken G, Cengiz U, Bektaş TE. Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties. JARNAS. June 2024;10(2):329-336. doi:10.28979/jarnas.1405595
Chicago Akarken, Gürkan, Uğur Cengiz, and Tijen Ennil Bektaş. “Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 2 (June 2024): 329-36. https://doi.org/10.28979/jarnas.1405595.
EndNote Akarken G, Cengiz U, Bektaş TE (June 1, 2024) Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties. Journal of Advanced Research in Natural and Applied Sciences 10 2 329–336.
IEEE G. Akarken, U. Cengiz, and T. E. Bektaş, “Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties”, JARNAS, vol. 10, no. 2, pp. 329–336, 2024, doi: 10.28979/jarnas.1405595.
ISNAD Akarken, Gürkan et al. “Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties”. Journal of Advanced Research in Natural and Applied Sciences 10/2 (June 2024), 329-336. https://doi.org/10.28979/jarnas.1405595.
JAMA Akarken G, Cengiz U, Bektaş TE. Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties. JARNAS. 2024;10:329–336.
MLA Akarken, Gürkan et al. “Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 2, 2024, pp. 329-36, doi:10.28979/jarnas.1405595.
Vancouver Akarken G, Cengiz U, Bektaş TE. Hydrothermal Synthesis of CuO Nanoparticles: Tailoring Morphology and Particle Size Variations for Enhanced Properties. JARNAS. 2024;10(2):329-36.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).