Research Article
BibTex RIS Cite

AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training

Year 2024, , 735 - 746, 30.09.2024
https://doi.org/10.28979/jarnas.1500916

Abstract

Acquiring a sufficient amount of diverse and accurate real-world data poses a significant challenge in advancing autonomous systems, which are becoming increasingly popular. Despite the aerospace industry's keen practical and economic interest in autonomous landing systems, readily available open-source datasets containing aerial photographs are scarce. To address this issue, we present a dataset named AeroRunway, comprising high-quality aerial photos designed to aid in runway recognition during the approach and landing stages. The dataset is composed of images using X-Plane, a flight simulator software developed by Laminar Research. It is a highly realistic and detailed flight simulation program that allows users to experience the sensation of piloting various aircraft in a virtual environment. These synthetic images were collected mostly in variable weather conditions above 5000 feet to supplement existing satellite imagery that can be used for extreme situations. This dataset was created from 28 different airports in different weather conditions, such as foggy and rainy, at various times of the day, such as day and night, and consists of 3880 images and is approximately 13.3 GB in size.

References

  • Z.-Q. Zhao, P. Zheng, S.-t. Xu, X. Wu, Object detection with deep learning: A review, IEEE Transactions on Neural Networks and Learning Systems 30 (11) (2019) 3212–3232.
  • G. Cheng, J. Han, X. Lu, Remote sensing image scene classification: Benchmark and state of the art, Proceedings of the IEEE 105 (10) (2017) 1865–1883.
  • G. Cheng, J. Han, P. Zhou, L. Guo, Multi-class geospatial object detection and geographic image classification based on collection of part detectors, ISPRS Journal of Photogrammetry and Remote Sensing (98) (2014) 119–132.
  • G. Cheng, J. Han, A survey on object detection in optical remote sensing images, ISPRS Journal of Photogrammetry and Remote Sensing (117) (2016) 11–28.
  • G. Cheng, P. Zhou, J. Han, Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images, IEEE Transactions on Geoscience and Remote Sensing 54 (12) (2016) 7405–7415.
  • 2D semantic labeling - Vaihingen dataset, https://paperswithcode.com/dataset/isprs-vaihingen, Accessed on 21 June 2023.
  • T. Bakirman, E. Sertel, HRPlanes: High resolution airplane dataset for deep learning, International Journal of Engineering and Geosciences 8 (3) (2022) 212-223.
  • G. Cheng, J. Wang, K. Li, X. Xie, C. Lang, Y. Yao, J. Han, Anchor-free oriented proposal generator for object detection, IEEE Transactions on Geoscience and Remote Sensing (60) (2022) 1–11.
  • W. Yu, G. Cheng, J. Wang, Y. Yao, X. Xie, X. Yao, J. Han, MAR20: A benchmark for military aircraft recognition in remote sensing images, National Remote Sensing Bulletin 27 (12) (2024) 2688–2696.
  • J. Ding, N. Xue, G.-S. Xia, X. Bai, W. Yang, M. Y. Yang, S. Belongie, J. Luo, M. Datcu, M. Pelillo, L. Zhang, Object detection in aerial images: A large-scale benchmark and challenges, IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (11) (2022) 7778–7796.
  • B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10 million image database for scene recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (6) (2017) 1452–1464.
  • O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet large scale visual recognition challenge, International Journal of Computer Vision (115) (2015) 211–252.
  • T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, P. Dollár, Microsoft COCO: Common objects in context, in: D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Computer Vision–ECCV 2014: 13th European Conference, Zurich, 2014, pp. 740-755.
  • G. A. Miller, WordNet: A lexical database for English, Communications of the ACM 38 (11) (1995) 39–41.
  • X. Sun, P. Wang, Z. Yan, F. Xu, R. Wang, W. Diao, J. Chen, J. Li, Y. Feng, T. Xu, M. Weinmann, S. Hinz, C. Wang, K. Fu, FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery, ISPRS Journal of Photogrammetry and Remote Sensing (184) (2022) 116-130.
  • L. Yu and P. Gong, Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives, International Journal of Remote Sensing 33 (12) 2012 3966–3986.
  • Google. Google Earth studio, https://www.google.com/intl/eng/earth/studio/, Accessed on 21 June 2023.
  • Google. Google Earth studio, https://www.google.com/earth/about/versions/, Accessed on 21 June 2023.
  • M. Ducoffe, M. Carrere, L. Féliers, A. Gauffriau, V. Mussot, C. Pagetti, T. Sammour, LARD – Landing approach runway detection – dataset for vision based landing, arXiv preprint arXiv:2304.09938 (2023).
  • A. T. Lee, Flight simulation: Virtual environments in aviation, Routledge, New York, 2017.
  • T. Longbridge, J. Burki-Cohen, T. Go, Flight simulator fidelity considerations for total airline pilot training and evaluation, AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Quebec, 2001, pp. 4425
  • G. Balduzzi, M. F. Bravo, A. Chernova, C. Cruceru, L. van Dijk, P. de Lange, J. Jerez, N. Koehler, M. Koerner, C. Perret-Gentil, Z. Pillio, R. Polak, H. Silva, R. Valentin, I. Whittington, G. Yakushev, Neural network based runway landing guidance for general aviation autoland, U.S. Department of Transportation Federal Aviation Administration, New Jersey, 2021.
  • N. Bor, (2024). AeroRunway, Zenodo. https://zenodo.org/records/11577457, Accessed on 22 September 2024.
Year 2024, , 735 - 746, 30.09.2024
https://doi.org/10.28979/jarnas.1500916

Abstract

References

  • Z.-Q. Zhao, P. Zheng, S.-t. Xu, X. Wu, Object detection with deep learning: A review, IEEE Transactions on Neural Networks and Learning Systems 30 (11) (2019) 3212–3232.
  • G. Cheng, J. Han, X. Lu, Remote sensing image scene classification: Benchmark and state of the art, Proceedings of the IEEE 105 (10) (2017) 1865–1883.
  • G. Cheng, J. Han, P. Zhou, L. Guo, Multi-class geospatial object detection and geographic image classification based on collection of part detectors, ISPRS Journal of Photogrammetry and Remote Sensing (98) (2014) 119–132.
  • G. Cheng, J. Han, A survey on object detection in optical remote sensing images, ISPRS Journal of Photogrammetry and Remote Sensing (117) (2016) 11–28.
  • G. Cheng, P. Zhou, J. Han, Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images, IEEE Transactions on Geoscience and Remote Sensing 54 (12) (2016) 7405–7415.
  • 2D semantic labeling - Vaihingen dataset, https://paperswithcode.com/dataset/isprs-vaihingen, Accessed on 21 June 2023.
  • T. Bakirman, E. Sertel, HRPlanes: High resolution airplane dataset for deep learning, International Journal of Engineering and Geosciences 8 (3) (2022) 212-223.
  • G. Cheng, J. Wang, K. Li, X. Xie, C. Lang, Y. Yao, J. Han, Anchor-free oriented proposal generator for object detection, IEEE Transactions on Geoscience and Remote Sensing (60) (2022) 1–11.
  • W. Yu, G. Cheng, J. Wang, Y. Yao, X. Xie, X. Yao, J. Han, MAR20: A benchmark for military aircraft recognition in remote sensing images, National Remote Sensing Bulletin 27 (12) (2024) 2688–2696.
  • J. Ding, N. Xue, G.-S. Xia, X. Bai, W. Yang, M. Y. Yang, S. Belongie, J. Luo, M. Datcu, M. Pelillo, L. Zhang, Object detection in aerial images: A large-scale benchmark and challenges, IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (11) (2022) 7778–7796.
  • B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10 million image database for scene recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (6) (2017) 1452–1464.
  • O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet large scale visual recognition challenge, International Journal of Computer Vision (115) (2015) 211–252.
  • T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, P. Dollár, Microsoft COCO: Common objects in context, in: D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (Eds.), Computer Vision–ECCV 2014: 13th European Conference, Zurich, 2014, pp. 740-755.
  • G. A. Miller, WordNet: A lexical database for English, Communications of the ACM 38 (11) (1995) 39–41.
  • X. Sun, P. Wang, Z. Yan, F. Xu, R. Wang, W. Diao, J. Chen, J. Li, Y. Feng, T. Xu, M. Weinmann, S. Hinz, C. Wang, K. Fu, FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery, ISPRS Journal of Photogrammetry and Remote Sensing (184) (2022) 116-130.
  • L. Yu and P. Gong, Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives, International Journal of Remote Sensing 33 (12) 2012 3966–3986.
  • Google. Google Earth studio, https://www.google.com/intl/eng/earth/studio/, Accessed on 21 June 2023.
  • Google. Google Earth studio, https://www.google.com/earth/about/versions/, Accessed on 21 June 2023.
  • M. Ducoffe, M. Carrere, L. Féliers, A. Gauffriau, V. Mussot, C. Pagetti, T. Sammour, LARD – Landing approach runway detection – dataset for vision based landing, arXiv preprint arXiv:2304.09938 (2023).
  • A. T. Lee, Flight simulation: Virtual environments in aviation, Routledge, New York, 2017.
  • T. Longbridge, J. Burki-Cohen, T. Go, Flight simulator fidelity considerations for total airline pilot training and evaluation, AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Quebec, 2001, pp. 4425
  • G. Balduzzi, M. F. Bravo, A. Chernova, C. Cruceru, L. van Dijk, P. de Lange, J. Jerez, N. Koehler, M. Koerner, C. Perret-Gentil, Z. Pillio, R. Polak, H. Silva, R. Valentin, I. Whittington, G. Yakushev, Neural network based runway landing guidance for general aviation autoland, U.S. Department of Transportation Federal Aviation Administration, New Jersey, 2021.
  • N. Bor, (2024). AeroRunway, Zenodo. https://zenodo.org/records/11577457, Accessed on 22 September 2024.
There are 23 citations in total.

Details

Primary Language English
Subjects Image Processing, Deep Learning, Graph, Social and Multimedia Data, Data Models, Storage and Indexing, Data Engineering and Data Science, Data Management and Data Science (Other)
Journal Section Research Article
Authors

Nesil Bor 0009-0001-2882-1471

Nergis Pervan Akman 0000-0003-3241-6812

Ali Berkol 0000-0002-3056-1226

Publication Date September 30, 2024
Submission Date June 14, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2024

Cite

APA Bor, N., Pervan Akman, N., & Berkol, A. (2024). AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training. Journal of Advanced Research in Natural and Applied Sciences, 10(3), 735-746. https://doi.org/10.28979/jarnas.1500916
AMA Bor N, Pervan Akman N, Berkol A. AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training. JARNAS. September 2024;10(3):735-746. doi:10.28979/jarnas.1500916
Chicago Bor, Nesil, Nergis Pervan Akman, and Ali Berkol. “AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 3 (September 2024): 735-46. https://doi.org/10.28979/jarnas.1500916.
EndNote Bor N, Pervan Akman N, Berkol A (September 1, 2024) AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training. Journal of Advanced Research in Natural and Applied Sciences 10 3 735–746.
IEEE N. Bor, N. Pervan Akman, and A. Berkol, “AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training”, JARNAS, vol. 10, no. 3, pp. 735–746, 2024, doi: 10.28979/jarnas.1500916.
ISNAD Bor, Nesil et al. “AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training”. Journal of Advanced Research in Natural and Applied Sciences 10/3 (September 2024), 735-746. https://doi.org/10.28979/jarnas.1500916.
JAMA Bor N, Pervan Akman N, Berkol A. AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training. JARNAS. 2024;10:735–746.
MLA Bor, Nesil et al. “AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 3, 2024, pp. 735-46, doi:10.28979/jarnas.1500916.
Vancouver Bor N, Pervan Akman N, Berkol A. AeroRunway: Diverse Weather and Time of Day Aerial Dataset for Autonomous Landing Training. JARNAS. 2024;10(3):735-46.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).