Research Article
BibTex RIS Cite
Year 2025, , 53 - 62, 31.03.2025
https://doi.org/10.28979/jarnas.1624994

Abstract

References

  • M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic, Frontiers in Pharmacology 12 (2021) 643972.
  • C. L. M. Joseph, S. Havstad, D. R. Ownby, E. L. Peterson, M. Maliarik, M. J. McCabe, C. Barone, C. C. Johnson, Blood lead level and risk of asthma, Environmental Health Perspectives 113 (7) (2005) 900–904.
  • D. E. Jacobs, J. Wilson, S. L. Dixon, J. Smith, A. Evens, The relationship of housing and population health: A 30-year retrospective analysis, Environmental Health Perspectives 117 (4) (2009) 597–604.
  • S. Kianoush, M. Balali-Mood, S. R. Mousavi, V. Moradi, M. Sadeghi, B. Dadpour, O. Rajabi, M. T. Shakeri, Comparison of therapeutic effects of garlic and d-penicillamine in patients with chronic occupational lead poisoning, Basic and Clinical Pharmacology & Toxicology 110 (2012) 476–481.
  • K. P. Olympio, C. Gonçalves, W. M. Günther, E. J. Bechara, Neurotoxicity and aggressiveness triggered by low-level Lead in children: A review, Revista Panamericana de Salud Pública 26 (3) (2009) 266–275.
  • J. Kasten-Jolly, Y. Heo, D. A. Lawrence, Central nervous system cytokine gene expression: Modulation by lead, Journal of Biochemical and Molecular Toxicology 25 (1) (2011) 41–54.
  • J. Xu, L. Lian, C. Wu, X-F. Wang, W-Y. Fu, L-H. Xu, Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice, Food and Chemical Toxicology 46 (5) (2008) 1488–1494.
  • G. M. Abdallah, M. El Sayed, O. M. Abo-Salem, Effect of lead toxicity on coenzyme Q levels in rat tissues, Food and Chemical Toxicology 48 (6) (2010) 1753–1756.
  • H. Zhang, K. Wei, M. Zhang, L. Liu, Y. Chen, Assessing the mechanism of DNA damage induced by lead through direct and indirect interactions, Journal of Photochemistry and Photobiology B: Biology 136 (2014) 46–53.
  • K. Nemsadze, T. Sanikidze, L. Ratiani, L. Gabunia, T. Sharashenidze, Mechanisms of lead-induced poisoning, Georgian Medicinal News 172-173 (2009) 92–96.
  • M. B. Virgolini, M. Aschner, Molecular mechanisms of lead neurotoxicity, Advances in Neurotoxicology 5 (2021) 159–213.
  • A. Akyasan, O. Özbek, H. Akbaş, Ö. Işıldak, Protic ionic liquid based potentiometric sensors: High selectivity detection of silver (I) ions, ChemistrySelect 10 (3) (2025) e202405507.
  • M. Elik, A. A. Kogu, O. Özbek, M. B. Gürdere, Thiosemicarbazone–based highly selective potentiometric sensor for the determination of copper (II) ions, Results in Surfaces and Interfaces 18 (2025) 100464
  • J. Ding, W. Qin, Recent advances in potentiometric biosensors, TrAC Trends in Analytical Chemistry 124 (2020) 115803.
  • P. Bühlmann, L. D. Chen, Ion-selective electrodes with ionophore-doped sensing membranes, Supramolecular Chemistry: From Molecules to NanomaterialsSons (2012).
  • K. Berkil Akar, Evaluation of alizarin and purpurin dyes for their ability to visualize latent fingermark on porous surfaces, Science & Justice 61 (2) (2021) 130–141.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Surface characterization and electroanalytical applications of the newly developed copper (II)-selective potentiometric sensor, Analytical Sciences 40 (2024) 141–149.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Novel solid contact ion selective sensor for potentiometric analysis of barium ions, Journal of the Turkish Chemical Society Section B: Chemical Engineering 8 (1) (2025) 1–10.
  • I. Isildak, M. Yolcu, O. Isildak, N. Demirel, G. Topal, H. Hosgoren, All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta 144 (2004) 177–181.
  • R. P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry 66 (1994) 2527–2536.
  • Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic Cations, Pure Appl. Chem 72 (2000) 1851–2082.
  • J. E. Vilasó-Cadre, D. Benítez-Fernández, I. A. López-Álvarez, F. Y. Tovar-Vázquez, M. A. Arada-Pérez, I.A. Reyes-Domínguez, Acid-base potentiometric titration using a stainless-steel electrode without oxidative treatment, Turkish Journal of Chemistry 47 (2023) 801–813.
  • Á. Golcs, V. Horváth, P. Huszthy, T. Tóth, Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore, Sensors 18 (5) (2018) 1407.
  • O. Özbek, E. Kalay, C. Berkel, O. N. Aslan, F. S. Tokalı, Synthesis, characterization and sensor properties of a new sulfonyl hydrazone derivative molecule: Potentiometric determination of Pb (II) ions, Chemical Papers 78 (2024) 2621–2633.
  • W. Song, C. Wu, H. Yin, X. Liu, P. Sa, J. Hu, Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Analytical Letters 41 (2008) 2844–2859.
  • O. Özbek, A novel potentiometric sensor for the determination of Pb (II) Ions based on a carbothioamide derivative in PVC matrix, Journal of the Turkish Chemical Society Section A: Chemistry 9 (3) (2022) 651–662.
  • B. Doğan, B. Çağlar, C. Topcu, F. Çoldur, A. O. Özdemir, E. Keleş Güner, O. Çubuk, K. V. Özdokur, All-solid-state composite lead (II)-selective potentiometric electrode based on clay, Sinop University Journal of Natural Sciences 7 (1) (2022) 8–21.

All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione

Year 2025, , 53 - 62, 31.03.2025
https://doi.org/10.28979/jarnas.1624994

Abstract

Ion-selective sensors are widely used in routine analysis of ionic species. In this research, a highly selective potentiometric sensor was developed, which is sensitive against Pb2+ ions compared to other common inorganic cations. The optimum composition of the developed sensor was determined to be as 3.0% ionophore, 64.0% bis(2–ethylhexyl)adipate (DEHA), 32.0% poly (vinyl chloride) (PVC), and 1.0% anion excluder (KTpClPB). The Pb2+–selective sensor had a Nernstian response of 28.7±2.2 mV/decade over a wide linear range of 1.0×10-5–1.0×10-1 M and a low detection limit of 2.77×10-6 M. The newly developed sensor worked over a wide pH range (4.0–10.0), and the response time was short (7s). The sensor, which had good reproducibility, was applied to various water samples and determined Pb2+ ions with very high recoveries.

References

  • M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic, Frontiers in Pharmacology 12 (2021) 643972.
  • C. L. M. Joseph, S. Havstad, D. R. Ownby, E. L. Peterson, M. Maliarik, M. J. McCabe, C. Barone, C. C. Johnson, Blood lead level and risk of asthma, Environmental Health Perspectives 113 (7) (2005) 900–904.
  • D. E. Jacobs, J. Wilson, S. L. Dixon, J. Smith, A. Evens, The relationship of housing and population health: A 30-year retrospective analysis, Environmental Health Perspectives 117 (4) (2009) 597–604.
  • S. Kianoush, M. Balali-Mood, S. R. Mousavi, V. Moradi, M. Sadeghi, B. Dadpour, O. Rajabi, M. T. Shakeri, Comparison of therapeutic effects of garlic and d-penicillamine in patients with chronic occupational lead poisoning, Basic and Clinical Pharmacology & Toxicology 110 (2012) 476–481.
  • K. P. Olympio, C. Gonçalves, W. M. Günther, E. J. Bechara, Neurotoxicity and aggressiveness triggered by low-level Lead in children: A review, Revista Panamericana de Salud Pública 26 (3) (2009) 266–275.
  • J. Kasten-Jolly, Y. Heo, D. A. Lawrence, Central nervous system cytokine gene expression: Modulation by lead, Journal of Biochemical and Molecular Toxicology 25 (1) (2011) 41–54.
  • J. Xu, L. Lian, C. Wu, X-F. Wang, W-Y. Fu, L-H. Xu, Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice, Food and Chemical Toxicology 46 (5) (2008) 1488–1494.
  • G. M. Abdallah, M. El Sayed, O. M. Abo-Salem, Effect of lead toxicity on coenzyme Q levels in rat tissues, Food and Chemical Toxicology 48 (6) (2010) 1753–1756.
  • H. Zhang, K. Wei, M. Zhang, L. Liu, Y. Chen, Assessing the mechanism of DNA damage induced by lead through direct and indirect interactions, Journal of Photochemistry and Photobiology B: Biology 136 (2014) 46–53.
  • K. Nemsadze, T. Sanikidze, L. Ratiani, L. Gabunia, T. Sharashenidze, Mechanisms of lead-induced poisoning, Georgian Medicinal News 172-173 (2009) 92–96.
  • M. B. Virgolini, M. Aschner, Molecular mechanisms of lead neurotoxicity, Advances in Neurotoxicology 5 (2021) 159–213.
  • A. Akyasan, O. Özbek, H. Akbaş, Ö. Işıldak, Protic ionic liquid based potentiometric sensors: High selectivity detection of silver (I) ions, ChemistrySelect 10 (3) (2025) e202405507.
  • M. Elik, A. A. Kogu, O. Özbek, M. B. Gürdere, Thiosemicarbazone–based highly selective potentiometric sensor for the determination of copper (II) ions, Results in Surfaces and Interfaces 18 (2025) 100464
  • J. Ding, W. Qin, Recent advances in potentiometric biosensors, TrAC Trends in Analytical Chemistry 124 (2020) 115803.
  • P. Bühlmann, L. D. Chen, Ion-selective electrodes with ionophore-doped sensing membranes, Supramolecular Chemistry: From Molecules to NanomaterialsSons (2012).
  • K. Berkil Akar, Evaluation of alizarin and purpurin dyes for their ability to visualize latent fingermark on porous surfaces, Science & Justice 61 (2) (2021) 130–141.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Surface characterization and electroanalytical applications of the newly developed copper (II)-selective potentiometric sensor, Analytical Sciences 40 (2024) 141–149.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Novel solid contact ion selective sensor for potentiometric analysis of barium ions, Journal of the Turkish Chemical Society Section B: Chemical Engineering 8 (1) (2025) 1–10.
  • I. Isildak, M. Yolcu, O. Isildak, N. Demirel, G. Topal, H. Hosgoren, All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta 144 (2004) 177–181.
  • R. P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry 66 (1994) 2527–2536.
  • Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic Cations, Pure Appl. Chem 72 (2000) 1851–2082.
  • J. E. Vilasó-Cadre, D. Benítez-Fernández, I. A. López-Álvarez, F. Y. Tovar-Vázquez, M. A. Arada-Pérez, I.A. Reyes-Domínguez, Acid-base potentiometric titration using a stainless-steel electrode without oxidative treatment, Turkish Journal of Chemistry 47 (2023) 801–813.
  • Á. Golcs, V. Horváth, P. Huszthy, T. Tóth, Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore, Sensors 18 (5) (2018) 1407.
  • O. Özbek, E. Kalay, C. Berkel, O. N. Aslan, F. S. Tokalı, Synthesis, characterization and sensor properties of a new sulfonyl hydrazone derivative molecule: Potentiometric determination of Pb (II) ions, Chemical Papers 78 (2024) 2621–2633.
  • W. Song, C. Wu, H. Yin, X. Liu, P. Sa, J. Hu, Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Analytical Letters 41 (2008) 2844–2859.
  • O. Özbek, A novel potentiometric sensor for the determination of Pb (II) Ions based on a carbothioamide derivative in PVC matrix, Journal of the Turkish Chemical Society Section A: Chemistry 9 (3) (2022) 651–662.
  • B. Doğan, B. Çağlar, C. Topcu, F. Çoldur, A. O. Özdemir, E. Keleş Güner, O. Çubuk, K. V. Özdokur, All-solid-state composite lead (II)-selective potentiometric electrode based on clay, Sinop University Journal of Natural Sciences 7 (1) (2022) 8–21.
There are 27 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Research Article
Authors

Abdulkadir Akyasan 0009-0000-6474-6483

Oğuz Özbek 0000-0001-5185-9681

Kıymet Berkil Akar 0000-0001-9993-9541

Ömer Işıldak 0000-0003-4690-4323

Publication Date March 31, 2025
Submission Date January 22, 2025
Acceptance Date March 13, 2025
Published in Issue Year 2025

Cite

APA Akyasan, A., Özbek, O., Berkil Akar, K., Işıldak, Ö. (2025). All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. Journal of Advanced Research in Natural and Applied Sciences, 11(1), 53-62. https://doi.org/10.28979/jarnas.1624994
AMA Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö. All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. JARNAS. March 2025;11(1):53-62. doi:10.28979/jarnas.1624994
Chicago Akyasan, Abdulkadir, Oğuz Özbek, Kıymet Berkil Akar, and Ömer Işıldak. “All-Solid-State Lead(II)–Selective Potentiometric Sensor Based on 9,10-Dibromo-2-(propylthio)anthracene-1,4-Dione”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 1 (March 2025): 53-62. https://doi.org/10.28979/jarnas.1624994.
EndNote Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö (March 1, 2025) All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. Journal of Advanced Research in Natural and Applied Sciences 11 1 53–62.
IEEE A. Akyasan, O. Özbek, K. Berkil Akar, and Ö. Işıldak, “All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione”, JARNAS, vol. 11, no. 1, pp. 53–62, 2025, doi: 10.28979/jarnas.1624994.
ISNAD Akyasan, Abdulkadir et al. “All-Solid-State Lead(II)–Selective Potentiometric Sensor Based on 9,10-Dibromo-2-(propylthio)anthracene-1,4-Dione”. Journal of Advanced Research in Natural and Applied Sciences 11/1 (March 2025), 53-62. https://doi.org/10.28979/jarnas.1624994.
JAMA Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö. All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. JARNAS. 2025;11:53–62.
MLA Akyasan, Abdulkadir et al. “All-Solid-State Lead(II)–Selective Potentiometric Sensor Based on 9,10-Dibromo-2-(propylthio)anthracene-1,4-Dione”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 1, 2025, pp. 53-62, doi:10.28979/jarnas.1624994.
Vancouver Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö. All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. JARNAS. 2025;11(1):53-62.


TR Dizin 20466


SAO/NASA Astrophysics Data System (ADS) 34270

                                                                                                 


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).