Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite
Year 2021, , 486 - 503, 15.12.2021
https://doi.org/10.28979/jarnas.952700

Abstract

References

  • Allam, Z. (2020). The First 50 days of COVID-19: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the Pandemic. Surveying the Covid-19 Pandemic and Its Implications, 1–7. doi: 10.1016/b978-0-12-824313-8.00001-2
  • Allam, Z. (2020). The First 50 days of COVID-19: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the Pandemic. Surveying the Covid-19 Pandemic and Its Implications, 1–7. doi: 10.1016/b978-0-12-824313-8.00001-2
  • Qu, J., Cao, B., & Chen, R. (2021). Respiratory virus and COVID-19. Covid-19, 1-6. doi:10.1016/b978-0-12-824003-8.00001-2
  • Qu, J., Cao, B., & Chen, R. (2021). Respiratory virus and COVID-19. Covid-19, 1-6. doi:10.1016/b978-0-12-824003-8.00001-2
  • WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved from https://covid19.who.int/
  • WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved from https://covid19.who.int/
  • Huang, P., Liu, T., Huang, L., Liu, H., Lei, M., Xu, W., . . . Liu, B. (2020). Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion. Radiology, 295(1), 22-23. doi:10.1148/radiol.2020200330
  • Huang, P., Liu, T., Huang, L., Liu, H., Lei, M., Xu, W., . . . Liu, B. (2020). Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion. Radiology, 295(1), 22-23. doi:10.1148/radiol.2020200330
  • Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports, 10(1). doi:10.1038/s41598-020-76550-z
  • Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports, 10(1). doi:10.1038/s41598-020-76550-z
  • Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 103792. doi:10.1016/j.compbiomed.2020.103792
  • Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 103792. doi:10.1016/j.compbiomed.2020.103792
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061. doi:10.1001/jama.2020.1585
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061. doi:10.1001/jama.2020.1585
  • Wang, Z., Xiao, Y., Li, Y., Zhang, J., Lu, F., Hou, M., & Liu, X. (2021). Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Pattern Recognition, 110, 107613. doi:10.1016/j.patcog.2020.107613
  • Wang, Z., Xiao, Y., Li, Y., Zhang, J., Lu, F., Hou, M., & Liu, X. (2021). Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Pattern Recognition, 110, 107613. doi:10.1016/j.patcog.2020.107613
  • Oh, Y., Park, S., & Ye, J. C. (2020). Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Transactions on Medical Imaging, 39(8), 2688-2700. doi:10.1109/tmi.2020.2993291
  • Oh, Y., Park, S., & Ye, J. C. (2020). Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Transactions on Medical Imaging, 39(8), 2688-2700. doi:10.1109/tmi.2020.2993291
  • Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications. doi:10.1007/s10044-021-00984-y
  • Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications. doi:10.1007/s10044-021-00984-y
  • Hemdan, E. E., Shouman, A. M., Karar, M. E. (2020). COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv:2003.11055
  • Hemdan, E. E., Shouman, A. M., Karar, M. E. (2020). COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv:2003.11055
  • Rubin, G. D., Ryerson, C. J., Haramati, L. B., Sverzellati, N., Kanne, J. P., Raoof, S., . . . Leung, A. N. (2020). The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology, 296(1), 172-180. doi:10.1148/radiol.2020201365
  • Rubin, G. D., Ryerson, C. J., Haramati, L. B., Sverzellati, N., Kanne, J. P., Raoof, S., . . . Leung, A. N. (2020). The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology, 296(1), 172-180. doi:10.1148/radiol.2020201365
  • Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2020). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. doi:10.1101/2020.03.30.20047456
  • Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2020). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. doi:10.1101/2020.03.30.20047456
  • Rahman, T. (2021, March 06). COVID-19 Radiography Database. Retrieved from https://www.kaggle.com/tawsifurrahman/covid19-radiography-databas
  • Rahman, T. (2021, March 06). COVID-19 Radiography Database. Retrieved from https://www.kaggle.com/tawsifurrahman/covid19-radiography-databas
  • Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. doi:10.1016/j.imu.2020.100360
  • Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. doi:10.1016/j.imu.2020.100360
  • Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, N., & Mohammadi, A. (2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Computers in Biology and Medicine, 121, 103795. doi:10.1016/j.compbiomed.2020.103795
  • Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, N., & Mohammadi, A. (2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Computers in Biology and Medicine, 121, 103795. doi:10.1016/j.compbiomed.2020.103795
  • Hassantabar, S., Ahmadi, M., & Sharifi, A. (2020). Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. Chaos, Solitons & Fractals, 140, 110170. doi:10.1016/j.chaos.2020.110170
  • Hassantabar, S., Ahmadi, M., & Sharifi, A. (2020). Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. Chaos, Solitons & Fractals, 140, 110170. doi:10.1016/j.chaos.2020.110170
  • Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2020). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Applied Intelligence, 51(3), 1690-1700. doi:10.1007/s10489-020-01902-1
  • Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2020). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Applied Intelligence, 51(3), 1690-1700. doi:10.1007/s10489-020-01902-1
  • Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 194, 105532. doi:10.1016/j.cmpb.2020.105532
  • Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 194, 105532. doi:10.1016/j.cmpb.2020.105532
  • Feki, I., Ammar, S., Kessentini, Y., & Muhammad, K. (2021). Federated learning for COVID-19 screening from Chest X-ray images. Applied Soft Computing, 106, 107330. doi:10.1016/j.asoc.2021.107330
  • Feki, I., Ammar, S., Kessentini, Y., & Muhammad, K. (2021). Federated learning for COVID-19 screening from Chest X-ray images. Applied Soft Computing, 106, 107330. doi:10.1016/j.asoc.2021.107330
  • Benmalek, E., Elmhamdi, J., & Jilbab, A. (2021). Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis. Biomedical Engineering Advances, 1, 100003. doi:10.1016/j.bea.2021.100003
  • Benmalek, E., Elmhamdi, J., & Jilbab, A. (2021). Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis. Biomedical Engineering Advances, 1, 100003. doi:10.1016/j.bea.2021.100003
  • Ouchicha, C., Ammor, O., & Meknassi, M. (2020). CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos, Solitons & Fractals, 140, 110245. doi:10.1016/j.chaos.2020.110245
  • Ouchicha, C., Ammor, O., & Meknassi, M. (2020). CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos, Solitons & Fractals, 140, 110245. doi:10.1016/j.chaos.2020.110245
  • Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A Survey on Deep Transfer Learning. ICANN.
  • Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A Survey on Deep Transfer Learning. ICANN.
  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109, 43-76.
  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109, 43-76.
  • Ankile, L.H., Heggland, M.F., Krange, K. (2020). Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications. arXiv:2011.12960
  • Ankile, L.H., Heggland, M.F., Krange, K. (2020). Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications. arXiv:2011.12960
  • Arora, D., Garg, M., & Gupta, M. (2020). Diving deep in Deep Convolutional Neural Network. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). doi:10.1109/icacccn51052.2020.9362907
  • Arora, D., Garg, M., & Gupta, M. (2020). Diving deep in Deep Convolutional Neural Network. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). doi:10.1109/icacccn51052.2020.9362907
  • Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural networks. 2017 International Conference on Communication and Signal Processing (ICCSP), 0588-0592.
  • Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural networks. 2017 International Conference on Communication and Signal Processing (ICCSP), 0588-0592.
  • Gulcu, A., & Kus, Z. (2020). Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm. IEEE Access, 8, 52528-52540. doi:10.1109/access.2020.2981141
  • Gulcu, A., & Kus, Z. (2020). Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm. IEEE Access, 8, 52528-52540. doi:10.1109/access.2020.2981141
  • BIMCV. (n.d.). Retrieved from https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
  • BIMCV. (n.d.). Retrieved from https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
  • Ml-Workgroup. (n.d.). Ml-workgroup/covid-19-image-repository. Retrieved from https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
  • Ml-Workgroup. (n.d.). Ml-workgroup/covid-19-image-repository. Retrieved from https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
  • Redazione. (2021, May 20). COVID-19 DATABASE. Retrieved from https://www.sirm.org/category/senza-categoria/covid-19/
  • Redazione. (2021, May 20). COVID-19 DATABASE. Retrieved from https://www.sirm.org/category/senza-categoria/covid-19/
  • Eurorad.org. (n.d.). Retrieved from https://www.eurorad.org/advanced-search?filter[0]=section:40
  • Eurorad.org. (n.d.). Retrieved from https://www.eurorad.org/advanced-search?filter[0]=section:40
  • Ieee8023. (n.d.). Ieee8023/covid-chestxray-dataset. Retrieved from https://github.com/ieee8023/covid-chestxray-dataset
  • Ieee8023. (n.d.). Ieee8023/covid-chestxray-dataset. Retrieved from https://github.com/ieee8023/covid-chestxray-dataset
  • Haghanifar, A., Majdabadi, M. M., & Ko, S. (2021, May 20). COVID-19 Chest X-Ray Image Repository. Retrieved from https://figshare.com/articles/dataset/COVID-19_Chest_X-Ray_Image_Repository/12580328
  • Haghanifar, A., Majdabadi, M. M., & Ko, S. (2021, May 20). COVID-19 Chest X-Ray Image Repository. Retrieved from https://figshare.com/articles/dataset/COVID-19_Chest_X-Ray_Image_Repository/12580328
  • Armiro. (n.d.). Armiro/COVID-CXNet. Retrieved from https://github.com/armiro/COVID-CXNet
  • Armiro. (n.d.). Armiro/COVID-CXNet. Retrieved from https://github.com/armiro/COVID-CXNet
  • RSNA Pneumonia Detection Challenge. (n.d.). Retrieved from https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
  • RSNA Pneumonia Detection Challenge. (n.d.). Retrieved from https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
  • Mooney, P. (2018, March 24). Chest X-Ray Images (Pneumonia). Retrieved from https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
  • Mooney, P. (2018, March 24). Chest X-Ray Images (Pneumonia). Retrieved from https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
  • Huang, G., Liu, Z., Maaten, L. V., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243
  • Huang, G., Liu, Z., Maaten, L. V., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243
  • Wang, S., & Zhang, Y. (2020). DenseNet-201-Based Deep Neural Network with Composite Learning Factor and Precomputation for Multiple Sclerosis Classification. ACM Transactions on Multimedia Computing, Communications, and Applications, 16(2s), 1-19. doi:10.1145/3341095
  • Wang, S., & Zhang, Y. (2020). DenseNet-201-Based Deep Neural Network with Composite Learning Factor and Precomputation for Multiple Sclerosis Classification. ACM Transactions on Multimedia Computing, Communications, and Applications, 16(2s), 1-19. doi:10.1145/3341095
  • Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.195
  • Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.195
  • Rismiyati, Endah, S. N., Khadijah, & Shiddiq, I. N. (2020). Xception Architecture Transfer Learning for Garbage Classification. 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). doi:10.1109/icicos51170.2020.9299017
  • Rismiyati, Endah, S. N., Khadijah, & Shiddiq, I. N. (2020). Xception Architecture Transfer Learning for Garbage Classification. 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). doi:10.1109/icicos51170.2020.9299017
  • Wu, X., Liu, R., Yang, H., & Chen, Z. (2020). An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). doi:10.1109/itca52113.2020.00063
  • Wu, X., Liu, R., Yang, H., & Chen, Z. (2020). An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). doi:10.1109/itca52113.2020.00063
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/11231
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/11231
  • Konig, J., Jenkins, M. D., Barrie, P., Mannion, M., & Morison, G. (2019). A Convolutional Neural Network for Pavement Surface Crack Segmentation Using Residual Connections and Attention Gating. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8803060
  • Konig, J., Jenkins, M. D., Barrie, P., Mannion, M., & Morison, G. (2019). A Convolutional Neural Network for Pavement Surface Crack Segmentation Using Residual Connections and Attention Gating. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8803060
  • Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning. Cambridge, MA: The MIT Pr
  • Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning. Cambridge, MA: The MIT Pr
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.0047
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.0047
  • Ganaie, m. A., Hu, M., Tanveer, M., Suganthan, P. N., (2021). Ensemble deep learning: A review. https://arxiv.org/abs/2104.02395
  • Ganaie, m. A., Hu, M., Tanveer, M., Suganthan, P. N., (2021). Ensemble deep learning: A review. https://arxiv.org/abs/2104.02395
  • Yang, Y., Lv, H., Chen, N., Wu, Y., Zheng, J., & Zheng, Z. (2021). Local minima found in the subparameter space can be effective for ensembles of deep convolutional neural networks. Pattern Recognition, 109, 107582. doi:10.1016/j.patcog.2020.107582
  • Yang, Y., Lv, H., Chen, N., Wu, Y., Zheng, J., & Zheng, Z. (2021). Local minima found in the subparameter space can be effective for ensembles of deep convolutional neural networks. Pattern Recognition, 109, 107582. doi:10.1016/j.patcog.2020.107582

Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation with Convolutional Neural Networks

Year 2021, , 486 - 503, 15.12.2021
https://doi.org/10.28979/jarnas.952700

Abstract

The COVID-19 pandemic, which emerged at the end of 2019, continues to be effective. Although various vaccines have been developed, uncertainties remain over vaccine sharing, supply, storage and effect. The tendency of some countries to keep the developed vaccines only for their own citizens and using them as a political leverage shows that the pandemic will not end in the near future. In addition, discussions continue about the effectiveness of the proposed vaccine and drugs. For these reasons, the most effective method in the fight against COVID-19 is still considered to be using mask, social distance and 14-day isolation after disease detection. In most countries around the world, difficulties in diagnosing COVID-19 remain. Within the scope of the related study, the detection of COVID-19 from cost-effective and easily accessible lung X-Ray images was studied. The detection of COVID-19, which can be confused with other lung diseases from X-Ray images, can only be made by expert radiologists. In this context, a hybrid approach with high accuracy classification based on convolutional neural network has been proposed for the detection of COVID-19 pneumonia. In the proposed architecture, binary and multiple classification was made using MobileNetV2, DenseNet121, Inception ResNet V2 and Xception networks. Then, these networks were combined with stacking ensemble learning to create a hybrid model.

References

  • Allam, Z. (2020). The First 50 days of COVID-19: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the Pandemic. Surveying the Covid-19 Pandemic and Its Implications, 1–7. doi: 10.1016/b978-0-12-824313-8.00001-2
  • Allam, Z. (2020). The First 50 days of COVID-19: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the Pandemic. Surveying the Covid-19 Pandemic and Its Implications, 1–7. doi: 10.1016/b978-0-12-824313-8.00001-2
  • Qu, J., Cao, B., & Chen, R. (2021). Respiratory virus and COVID-19. Covid-19, 1-6. doi:10.1016/b978-0-12-824003-8.00001-2
  • Qu, J., Cao, B., & Chen, R. (2021). Respiratory virus and COVID-19. Covid-19, 1-6. doi:10.1016/b978-0-12-824003-8.00001-2
  • WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved from https://covid19.who.int/
  • WHO Coronavirus (COVID-19) Dashboard. (n.d.). Retrieved from https://covid19.who.int/
  • Huang, P., Liu, T., Huang, L., Liu, H., Lei, M., Xu, W., . . . Liu, B. (2020). Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion. Radiology, 295(1), 22-23. doi:10.1148/radiol.2020200330
  • Huang, P., Liu, T., Huang, L., Liu, H., Lei, M., Xu, W., . . . Liu, B. (2020). Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion. Radiology, 295(1), 22-23. doi:10.1148/radiol.2020200330
  • Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports, 10(1). doi:10.1038/s41598-020-76550-z
  • Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports, 10(1). doi:10.1038/s41598-020-76550-z
  • Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 103792. doi:10.1016/j.compbiomed.2020.103792
  • Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, 103792. doi:10.1016/j.compbiomed.2020.103792
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061. doi:10.1001/jama.2020.1585
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., . . . Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061. doi:10.1001/jama.2020.1585
  • Wang, Z., Xiao, Y., Li, Y., Zhang, J., Lu, F., Hou, M., & Liu, X. (2021). Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Pattern Recognition, 110, 107613. doi:10.1016/j.patcog.2020.107613
  • Wang, Z., Xiao, Y., Li, Y., Zhang, J., Lu, F., Hou, M., & Liu, X. (2021). Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays. Pattern Recognition, 110, 107613. doi:10.1016/j.patcog.2020.107613
  • Oh, Y., Park, S., & Ye, J. C. (2020). Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Transactions on Medical Imaging, 39(8), 2688-2700. doi:10.1109/tmi.2020.2993291
  • Oh, Y., Park, S., & Ye, J. C. (2020). Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets. IEEE Transactions on Medical Imaging, 39(8), 2688-2700. doi:10.1109/tmi.2020.2993291
  • Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications. doi:10.1007/s10044-021-00984-y
  • Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Analysis and Applications. doi:10.1007/s10044-021-00984-y
  • Hemdan, E. E., Shouman, A. M., Karar, M. E. (2020). COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv:2003.11055
  • Hemdan, E. E., Shouman, A. M., Karar, M. E. (2020). COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv:2003.11055
  • Rubin, G. D., Ryerson, C. J., Haramati, L. B., Sverzellati, N., Kanne, J. P., Raoof, S., . . . Leung, A. N. (2020). The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology, 296(1), 172-180. doi:10.1148/radiol.2020201365
  • Rubin, G. D., Ryerson, C. J., Haramati, L. B., Sverzellati, N., Kanne, J. P., Raoof, S., . . . Leung, A. N. (2020). The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology, 296(1), 172-180. doi:10.1148/radiol.2020201365
  • Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2020). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. doi:10.1101/2020.03.30.20047456
  • Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2020). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. doi:10.1101/2020.03.30.20047456
  • Rahman, T. (2021, March 06). COVID-19 Radiography Database. Retrieved from https://www.kaggle.com/tawsifurrahman/covid19-radiography-databas
  • Rahman, T. (2021, March 06). COVID-19 Radiography Database. Retrieved from https://www.kaggle.com/tawsifurrahman/covid19-radiography-databas
  • Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. doi:10.1016/j.imu.2020.100360
  • Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. doi:10.1016/j.imu.2020.100360
  • Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, N., & Mohammadi, A. (2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Computers in Biology and Medicine, 121, 103795. doi:10.1016/j.compbiomed.2020.103795
  • Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, N., & Mohammadi, A. (2020). Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. Computers in Biology and Medicine, 121, 103795. doi:10.1016/j.compbiomed.2020.103795
  • Hassantabar, S., Ahmadi, M., & Sharifi, A. (2020). Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. Chaos, Solitons & Fractals, 140, 110170. doi:10.1016/j.chaos.2020.110170
  • Hassantabar, S., Ahmadi, M., & Sharifi, A. (2020). Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. Chaos, Solitons & Fractals, 140, 110170. doi:10.1016/j.chaos.2020.110170
  • Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2020). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Applied Intelligence, 51(3), 1690-1700. doi:10.1007/s10489-020-01902-1
  • Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2020). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Applied Intelligence, 51(3), 1690-1700. doi:10.1007/s10489-020-01902-1
  • Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 194, 105532. doi:10.1016/j.cmpb.2020.105532
  • Pereira, R. M., Bertolini, D., Teixeira, L. O., Silla, C. N., & Costa, Y. M. (2020). COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomedicine, 194, 105532. doi:10.1016/j.cmpb.2020.105532
  • Feki, I., Ammar, S., Kessentini, Y., & Muhammad, K. (2021). Federated learning for COVID-19 screening from Chest X-ray images. Applied Soft Computing, 106, 107330. doi:10.1016/j.asoc.2021.107330
  • Feki, I., Ammar, S., Kessentini, Y., & Muhammad, K. (2021). Federated learning for COVID-19 screening from Chest X-ray images. Applied Soft Computing, 106, 107330. doi:10.1016/j.asoc.2021.107330
  • Benmalek, E., Elmhamdi, J., & Jilbab, A. (2021). Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis. Biomedical Engineering Advances, 1, 100003. doi:10.1016/j.bea.2021.100003
  • Benmalek, E., Elmhamdi, J., & Jilbab, A. (2021). Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis. Biomedical Engineering Advances, 1, 100003. doi:10.1016/j.bea.2021.100003
  • Ouchicha, C., Ammor, O., & Meknassi, M. (2020). CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos, Solitons & Fractals, 140, 110245. doi:10.1016/j.chaos.2020.110245
  • Ouchicha, C., Ammor, O., & Meknassi, M. (2020). CVDNet: A novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos, Solitons & Fractals, 140, 110245. doi:10.1016/j.chaos.2020.110245
  • Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A Survey on Deep Transfer Learning. ICANN.
  • Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A Survey on Deep Transfer Learning. ICANN.
  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109, 43-76.
  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109, 43-76.
  • Ankile, L.H., Heggland, M.F., Krange, K. (2020). Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications. arXiv:2011.12960
  • Ankile, L.H., Heggland, M.F., Krange, K. (2020). Deep Convolutional Neural Networks: A survey of the foundations, selected improvements, and some current applications. arXiv:2011.12960
  • Arora, D., Garg, M., & Gupta, M. (2020). Diving deep in Deep Convolutional Neural Network. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). doi:10.1109/icacccn51052.2020.9362907
  • Arora, D., Garg, M., & Gupta, M. (2020). Diving deep in Deep Convolutional Neural Network. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). doi:10.1109/icacccn51052.2020.9362907
  • Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural networks. 2017 International Conference on Communication and Signal Processing (ICCSP), 0588-0592.
  • Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural networks. 2017 International Conference on Communication and Signal Processing (ICCSP), 0588-0592.
  • Gulcu, A., & Kus, Z. (2020). Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm. IEEE Access, 8, 52528-52540. doi:10.1109/access.2020.2981141
  • Gulcu, A., & Kus, Z. (2020). Hyper-Parameter Selection in Convolutional Neural Networks Using Microcanonical Optimization Algorithm. IEEE Access, 8, 52528-52540. doi:10.1109/access.2020.2981141
  • BIMCV. (n.d.). Retrieved from https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
  • BIMCV. (n.d.). Retrieved from https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711
  • Ml-Workgroup. (n.d.). Ml-workgroup/covid-19-image-repository. Retrieved from https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
  • Ml-Workgroup. (n.d.). Ml-workgroup/covid-19-image-repository. Retrieved from https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png
  • Redazione. (2021, May 20). COVID-19 DATABASE. Retrieved from https://www.sirm.org/category/senza-categoria/covid-19/
  • Redazione. (2021, May 20). COVID-19 DATABASE. Retrieved from https://www.sirm.org/category/senza-categoria/covid-19/
  • Eurorad.org. (n.d.). Retrieved from https://www.eurorad.org/advanced-search?filter[0]=section:40
  • Eurorad.org. (n.d.). Retrieved from https://www.eurorad.org/advanced-search?filter[0]=section:40
  • Ieee8023. (n.d.). Ieee8023/covid-chestxray-dataset. Retrieved from https://github.com/ieee8023/covid-chestxray-dataset
  • Ieee8023. (n.d.). Ieee8023/covid-chestxray-dataset. Retrieved from https://github.com/ieee8023/covid-chestxray-dataset
  • Haghanifar, A., Majdabadi, M. M., & Ko, S. (2021, May 20). COVID-19 Chest X-Ray Image Repository. Retrieved from https://figshare.com/articles/dataset/COVID-19_Chest_X-Ray_Image_Repository/12580328
  • Haghanifar, A., Majdabadi, M. M., & Ko, S. (2021, May 20). COVID-19 Chest X-Ray Image Repository. Retrieved from https://figshare.com/articles/dataset/COVID-19_Chest_X-Ray_Image_Repository/12580328
  • Armiro. (n.d.). Armiro/COVID-CXNet. Retrieved from https://github.com/armiro/COVID-CXNet
  • Armiro. (n.d.). Armiro/COVID-CXNet. Retrieved from https://github.com/armiro/COVID-CXNet
  • RSNA Pneumonia Detection Challenge. (n.d.). Retrieved from https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
  • RSNA Pneumonia Detection Challenge. (n.d.). Retrieved from https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
  • Mooney, P. (2018, March 24). Chest X-Ray Images (Pneumonia). Retrieved from https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
  • Mooney, P. (2018, March 24). Chest X-Ray Images (Pneumonia). Retrieved from https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
  • Huang, G., Liu, Z., Maaten, L. V., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243
  • Huang, G., Liu, Z., Maaten, L. V., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243
  • Wang, S., & Zhang, Y. (2020). DenseNet-201-Based Deep Neural Network with Composite Learning Factor and Precomputation for Multiple Sclerosis Classification. ACM Transactions on Multimedia Computing, Communications, and Applications, 16(2s), 1-19. doi:10.1145/3341095
  • Wang, S., & Zhang, Y. (2020). DenseNet-201-Based Deep Neural Network with Composite Learning Factor and Precomputation for Multiple Sclerosis Classification. ACM Transactions on Multimedia Computing, Communications, and Applications, 16(2s), 1-19. doi:10.1145/3341095
  • Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.195
  • Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.195
  • Rismiyati, Endah, S. N., Khadijah, & Shiddiq, I. N. (2020). Xception Architecture Transfer Learning for Garbage Classification. 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). doi:10.1109/icicos51170.2020.9299017
  • Rismiyati, Endah, S. N., Khadijah, & Shiddiq, I. N. (2020). Xception Architecture Transfer Learning for Garbage Classification. 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). doi:10.1109/icicos51170.2020.9299017
  • Wu, X., Liu, R., Yang, H., & Chen, Z. (2020). An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). doi:10.1109/itca52113.2020.00063
  • Wu, X., Liu, R., Yang, H., & Chen, Z. (2020). An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning. 2020 2nd International Conference on Information Technology and Computer Application (ITCA). doi:10.1109/itca52113.2020.00063
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/11231
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/11231
  • Konig, J., Jenkins, M. D., Barrie, P., Mannion, M., & Morison, G. (2019). A Convolutional Neural Network for Pavement Surface Crack Segmentation Using Residual Connections and Attention Gating. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8803060
  • Konig, J., Jenkins, M. D., Barrie, P., Mannion, M., & Morison, G. (2019). A Convolutional Neural Network for Pavement Surface Crack Segmentation Using Residual Connections and Attention Gating. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8803060
  • Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning. Cambridge, MA: The MIT Pr
  • Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning. Cambridge, MA: The MIT Pr
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.0047
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2018.0047
  • Ganaie, m. A., Hu, M., Tanveer, M., Suganthan, P. N., (2021). Ensemble deep learning: A review. https://arxiv.org/abs/2104.02395
  • Ganaie, m. A., Hu, M., Tanveer, M., Suganthan, P. N., (2021). Ensemble deep learning: A review. https://arxiv.org/abs/2104.02395
  • Yang, Y., Lv, H., Chen, N., Wu, Y., Zheng, J., & Zheng, Z. (2021). Local minima found in the subparameter space can be effective for ensembles of deep convolutional neural networks. Pattern Recognition, 109, 107582. doi:10.1016/j.patcog.2020.107582
  • Yang, Y., Lv, H., Chen, N., Wu, Y., Zheng, J., & Zheng, Z. (2021). Local minima found in the subparameter space can be effective for ensembles of deep convolutional neural networks. Pattern Recognition, 109, 107582. doi:10.1016/j.patcog.2020.107582
There are 96 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Article
Authors

Hacer Karacan 0000-0001-6788-008X

Furkan Eryılmaz 0000-0003-1389-6478

Publication Date December 15, 2021
Submission Date June 21, 2021
Published in Issue Year 2021

Cite

APA Karacan, H., & Eryılmaz, F. (2021). Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation with Convolutional Neural Networks. Journal of Advanced Research in Natural and Applied Sciences, 7(4), 486-503. https://doi.org/10.28979/jarnas.952700
AMA Karacan H, Eryılmaz F. Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation with Convolutional Neural Networks. JARNAS. December 2021;7(4):486-503. doi:10.28979/jarnas.952700
Chicago Karacan, Hacer, and Furkan Eryılmaz. “Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation With Convolutional Neural Networks”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 4 (December 2021): 486-503. https://doi.org/10.28979/jarnas.952700.
EndNote Karacan H, Eryılmaz F (December 1, 2021) Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation with Convolutional Neural Networks. Journal of Advanced Research in Natural and Applied Sciences 7 4 486–503.
IEEE H. Karacan and F. Eryılmaz, “Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation with Convolutional Neural Networks”, JARNAS, vol. 7, no. 4, pp. 486–503, 2021, doi: 10.28979/jarnas.952700.
ISNAD Karacan, Hacer - Eryılmaz, Furkan. “Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation With Convolutional Neural Networks”. Journal of Advanced Research in Natural and Applied Sciences 7/4 (December 2021), 486-503. https://doi.org/10.28979/jarnas.952700.
JAMA Karacan H, Eryılmaz F. Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation with Convolutional Neural Networks. JARNAS. 2021;7:486–503.
MLA Karacan, Hacer and Furkan Eryılmaz. “Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation With Convolutional Neural Networks”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 4, 2021, pp. 486-03, doi:10.28979/jarnas.952700.
Vancouver Karacan H, Eryılmaz F. Covid-19 Detection from Chest X-Ray Images and Hybrid Model Recommendation with Convolutional Neural Networks. JARNAS. 2021;7(4):486-503.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).