Research Article
BibTex RIS Cite

Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy

Year 2020, Volume: 6 Issue: 2, 364 - 377, 29.12.2020
https://doi.org/10.28979/jarnas.844955

Abstract

Radiotherapy is one of the most important treatment methods of cancer, which is the worldwide disease nowa-days. It is essential to protect the critical organs and healthy tissue inside the radiated area during the radiotherapy. For this reason, Cerrobend block (lipowitz alloy), which is made specifically for each patient, are commonly used in the hospitals. In the clinical application, the acceptable level of the gamma-ray transmission for Cerrobend blocks must be less than 5%. In this research, GEANT4 based GATE simulation program modelled to compare between gamma-ray transmissions of the standard Cerrobend block and newly designed Cerrobend blocks formed by adding the various number of the pure lead marbles. Experimental measurements were carried out with Alcyon II model Co-60 teletherapy machine for various field sizes by using Farmer type 0,6 cc ion chamber, PTW Unidos Dosimeter and solid phantom in Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital in 2010. The gamma-ray transmission of the newly designed Cerrobend block was found less than the standard block, therefore the protection of the critical organs for the patient could be better. The dose acquired by GEANT4 based GATE simulation program is consistent in experimentally measured radiation dose. Furthermore, the values of the linear attenuation coefficient theoretically obtained from XCOM software agree with the values acquired by experiment and simulation

References

  • Aguwa, K. (2015). Radiation dose study in nuclear medicine using gate. Master Thesis The University of Arizona, USA. Retrieved from: https://www.optics.arizona.edu/sites/optics.arizona.edu/files/kasarach-aguwa-thesis.pdf
  • Alkaya, F., Baş, M., Gürsoy, T. O., & Kemikler, G. (2000). The effects of shielding blocks on dosimetry during cobalt teletherapy on irregular thorax and mediasten areas. Ankara University Tıp Fakültesi Mecmuası, 53(2), 113-119. Retrieved from: http://cms.galenos.com.tr/Uploads/Article_19110/AUTFM-53-113-En.pdf
  • Chang, S., Zhang, Y., Dong, Y., Zhang, H. & Dai, Y. (2012). A noval cerrobend block in the radiation therapy. Science China Technological Sciences, 55(1), 22-27. https://doi.org/10.1007/s11431-011-4559-x
  • Davis, J. B., & Reiner, B. (1995). Depth dose under narrow shielding blocks: a comparison of measured and calculated dose. Radiotherapy and Oncology 34, 219-227. https://doi.org/10.1016/0167-8140(95)01523-J
  • Di Venanzio, C., Marinelli, M., Tonnetti, A., Verona-Rinati, G., Bagala, P., Falco, M. D., Guerra, A. S. & Pimpinella, M. (2015). Comparison between small radiation therapy electron beams collimated by Cerrobend and tubular applicators, Journal of Applied Clinical Medical Physics, 16(1), 329-334. https://doi.org/10.1120/jacmp.v16i1.5186
  • Erk, İ., Altınsoy, N., Karaaslan, Ş. İ., & Bora, A. (2016). Determination of Photon Mass Attenuation Coefficient for Some Phantom Materials using GATE Code and Comparison with Experimental and XCOM Data, International Journal of Nuclear and Radiation Science and Technology, 1(2), 11-13. Retrieved from: https://iakkurt.dergipark.gov.tr/ijnurasat
  • Farajollahi, A. R., Bouzarjomehri, F. & Kiani, M. (2015). Comparison between Clinically Used Irregular Fields Shielded by Cerrobend and Standard Lead Blocks. Journal of Biomed Physics and Engineering, 5(2), 77-82. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479389/
  • Han, K., Ballon, D., Chui, C. & Mohan, R. (1987). Monte Carlo simulation of a cobalt 60 beam. Technical reports Medical Physics, 14(3), 414-419. https://doi.org/10.1118/1.596120
  • Jeraj, M. & Robar, V. (2004). Multileaf collimator in radiotherapy. Radiology and Oncology, 38(3), 235-240. Retrieved from: https://www.radioloncol.com/index.php/ro/article/view/1335
  • Joshi, C. P., Darko, J., Vidyasagar, P. B., & Schreiner, L. J. (2008). Investigation of an efficient source design for Cobalt-60-based tomotherapy using EGSnrc Monte Carlo simulations. IOP Publishing, Physics in Medicine and Biology, 53, 575–592. Retrieved from: https://iopscience.iop.org/article/10.1088/0031-9155/53/3/005/meta
  • Khan, F. M. (2003). The Physics of Radiation Therapy. A Wolters Kluwer Company, (3) 154, 160-162, 273-276, Minneapolis, Minnesota.
  • Kürem, H. B. S. (2020). The comparision of gamma-rays transmissions between measurement and simulation obtained wi̇th the protective blocks developed as an alternative to the cerrobend blocks used in radiotherapy. Published Master Thesis, Bitlis Eren University, Physics Department, Bitlis, Turkey. Retrieved from:: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • McAlister, D. (2018). Gamma ray attenuation properties of common shielding materials. PhD Thesis, PG Research Foundation, Inc. 1955 University Lane Lisle, IL 60532, USA. Retrieved from: https://edisciplinas.usp.br/pluginfile.php/918077/mod_resource/content/1/gamma%20ray%20attenuation.pdf
  • Mostafa, A. M. A., Issa, S. A. M. & Sayyed, M. I. (2017). Gamma-ray shielding properties of PbO-B2O3 -P2O5 doped with WO3. Elsevier Journal of Alloys and Compounds, 708, 294-300. https://doi.org/10.1016/j.jallcom.2017.02.303
  • Oliveira, A. C. H., Vieira, J. W., Santana, M. G., & Lima, F. R. A. (2013). Monte Carlo Simulation of a Medical Linear Accelerator for Generation of Phase Spaces. International Nuclear Atlantic Conference - INAC. Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/015/46015552.pdf
  • Ozyurt, O., Altinsoy, N., Karaaslan, Ş. İ., Bora, A., Büyük, B., & Erk, İ. (2018). Calculation of gamma ray attenuation coefficient of some granite samples using a Monte Carlo simulation code. Radiation Physics and Chemistry, 144, 271-275. https://doi.org/10.1016/j.radphyschem.2017.08.024
  • Perini, A. P., Neves, L. P., Fernandez-Varea, J. M., Büermann, L. & Caldas, L. V. E. (2013). Evaluation and Simulation of a New Ionization Chamber Design for use in Computed Tomography Beams IEEE Transactions on Nuclear Science, 60(2), 768-773. Retrieved from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6428665
  • Reda, S. M. (2016). Gamma ray shielding by a new combination of aluminium, iron, copper and lead using MCNP5”, Arab Journal of Nuclear Science and Applications, 94(4), 211-217. Retrieved from: http://www.esnsa-eg.com/download/researchFiles/(23)%20%20%20%20%20116-15.pdf
  • Sarrut, D., Bardies, M., Boussion, N., Freud, N., Jan, S., Letang, J.M., Loudos, G., Maigne, L., Marcatili, S., Mauxion, T., Papadimitroulas, P., Perrot, Y., Pietrzyk, U., Robert, C., Schaart, D., Visvikis, D. & Buvat, I. (2014). A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Medical Physics, 41(6), 1-14. https://doi.org/10.1118/1.4871617
  • Seenappa, L., Manjunatha, H. C., Chandrika, B. M., & Chikka, H. (2017). A Study of Shielding Properties of X-ray and Gamma in Barium Compounds. Journal of Radiation Protection and Research, 42(1), 26-32. https://doi.org/10.14407/jrpr.2017.42.1.26
  • Simon, R. C., Sorenson, J. A. & Michael, E.P. (1980-2012). Physics in Nuclear Medicine. Fourth Edition, Saunders, An imprint of Elsevier Inc. Taherkhani, A., Mohammadi, M., Saboori, M. S., & Changizi, V. (2010). Evaluation of the physical characteristic of Cerrobend blocks used for radiation therapy. International Journal of Radiation Research, 8(2), 93-101. Retrieved from: http://ijrr.com/article-1-622-en.pdf
  • Tarım, U. A., & Gürler, O. (2018). Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses. Sakarya University Journal of Science, 22(6), 1848-1852. https://doi.org/10.16984/saufenbilder.443765
  • Technical Specifications of External Beam Gamma Teletheraphy System. Best Theratronics. Retrieved from: http://www.theratronics.ca/PDFs/BT_GB_100-80_tech_specs.pdf
  • Tekin, H. O., Ergüzel, T. T., Sayyed, M. I., Singh, V. P., Manıcı, T., Altunsoy, E. E. & Agar, O. (2018). An investigation on shielding properties of different granite samples using MCNPX Code. Digest Journal of Nanomaterials and Biostructures, 13(2), 381-389. Retrieved from: https://hdl.handle.net/11492/2641
  • Tekin, H. O. & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(95), 1-4. Retrieved from: https://link.springer.com/article/10.1007/s41365-017-0253-4
  • Tellili, B., Elmahroug, Y., & Souga, C. (2017). Investigation on radiation shielding parameters of cerrobend alloys. Nuclear Engineering and Technology, 49,1758-1777. https://doi.org/10.1016/j.net.2017.08.020
  • URL-1 Open Gate Collaboration, Users Guide V8. Retrieved from: http://www.opengatecollaboration.org/
  • Wojcicka, J. B., Yankelevich, R., Werner, B. L., & Lasher, D. E. (2008). Technical Note: On Cerrobend shielding for 18-22 MV electron beams. Medical Physics, 35(10), 4625-4629. Retrieved from: https://pubmed.ncbi.nlm.nih.gov/18975708/
  • Yavuzkanat, N. (2010). The Comparison of Gamma-Rays Transmissions of Shielding Blocks with Lead Marbles and Shielding Blocks used in Radiotherapy. Published Master Thesis, Ankara University, Physics Department, Ankara, Turkey. Retrieved from: https://www.ulusaltezmerkezi.net/radyoterapide-kullanilan-koruyucu-bloklar-ile-kursun-bilye-ilaveli-koruyucu-bloklarin-gama-isini-gecirgenliklerinin-karsilastirilmasi/
  • Yorgun, N. Y. (2019). Gamma-ray Shielding Properties of Lithium Borate Glass Doped with Colemanit Mineral. BEU Fen Bilimleri Dergisi, 8(3), 762-771. https://dergipark.org.tr/tr/pub/bitlisfen/issue/49103/525527

Radyoterapide Kullanılan Yeni Tasarlanmış Koruyucu Blokların Gama Işını Geçirgenliklerinin Monte Carlo Simülasyonu

Year 2020, Volume: 6 Issue: 2, 364 - 377, 29.12.2020
https://doi.org/10.28979/jarnas.844955

Abstract

Radyoterapi, günümüzde en yaygın hastalık olan kanserin en önemli tedavi yöntemlerinden biridir. Radyoterapi sırasında ışınlanan alan içindeki kritik organların ve sağlıklı dokuların korunması esastır. Bu nedenle her hastaya özel olarak yapılan Cerrobend blok (lipowitz alaşımı) hastanelerde yaygın olarak kullanılmaktadır. Klinik uygulamada, Cerrobend bloklar için kabul edilen gama ışını geçirgenlik seviyesi % 5'ten azdır. Bu çalışmada, GEANT4 tabanlı GATE simülasyon programı modellenerek, standart Cerrobend bloğunun gama ışını aktarımları farklı sayılarda saf kurşun bilyelerin ilave edilmesiyle oluşturulan yeni tasarlanmış Cerrobend blokların gama radyasyonu geçirgenlikleriyle karşılaştırılmıştır. 2010 yılında Dr. Abdurrahman Yurtaslan Ankara Onkoloji Eğitim ve Araştırma Hastanesinde, çeşitli radyasyon alan boyutları için Alcyon II model Co-60 teleterapi cihazı ile Farmer tipi 0,6 cc iyon odası, PTW Unidos Dozimetre ve katı fantom kullanılarak deneysel ölçümleri gerçekleştirilmiştir. Yeni tasarlanan Cerrobend blokların gama ışını geçirgenliği standart bloktan daha az olarak bulunmuştur, böylelikle hasta için kritik organların daha iyi korunması sağlanmış olacaktır. GEANT4 tabanlı GATE simülasyon programı ile elde edilen doz değerleri, deneysel olarak ölçülen radyasyon doz değerleri ile tutarlı olarak hesaplanmıştır. Ayrıca, XCOM yazılımından teorik olarak elde edilen doğrusal sönüm katsayısı, deney ve simülasyonla elde edilen sonuçlarla da uyumlu olarak bulunmuştur.

References

  • Aguwa, K. (2015). Radiation dose study in nuclear medicine using gate. Master Thesis The University of Arizona, USA. Retrieved from: https://www.optics.arizona.edu/sites/optics.arizona.edu/files/kasarach-aguwa-thesis.pdf
  • Alkaya, F., Baş, M., Gürsoy, T. O., & Kemikler, G. (2000). The effects of shielding blocks on dosimetry during cobalt teletherapy on irregular thorax and mediasten areas. Ankara University Tıp Fakültesi Mecmuası, 53(2), 113-119. Retrieved from: http://cms.galenos.com.tr/Uploads/Article_19110/AUTFM-53-113-En.pdf
  • Chang, S., Zhang, Y., Dong, Y., Zhang, H. & Dai, Y. (2012). A noval cerrobend block in the radiation therapy. Science China Technological Sciences, 55(1), 22-27. https://doi.org/10.1007/s11431-011-4559-x
  • Davis, J. B., & Reiner, B. (1995). Depth dose under narrow shielding blocks: a comparison of measured and calculated dose. Radiotherapy and Oncology 34, 219-227. https://doi.org/10.1016/0167-8140(95)01523-J
  • Di Venanzio, C., Marinelli, M., Tonnetti, A., Verona-Rinati, G., Bagala, P., Falco, M. D., Guerra, A. S. & Pimpinella, M. (2015). Comparison between small radiation therapy electron beams collimated by Cerrobend and tubular applicators, Journal of Applied Clinical Medical Physics, 16(1), 329-334. https://doi.org/10.1120/jacmp.v16i1.5186
  • Erk, İ., Altınsoy, N., Karaaslan, Ş. İ., & Bora, A. (2016). Determination of Photon Mass Attenuation Coefficient for Some Phantom Materials using GATE Code and Comparison with Experimental and XCOM Data, International Journal of Nuclear and Radiation Science and Technology, 1(2), 11-13. Retrieved from: https://iakkurt.dergipark.gov.tr/ijnurasat
  • Farajollahi, A. R., Bouzarjomehri, F. & Kiani, M. (2015). Comparison between Clinically Used Irregular Fields Shielded by Cerrobend and Standard Lead Blocks. Journal of Biomed Physics and Engineering, 5(2), 77-82. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479389/
  • Han, K., Ballon, D., Chui, C. & Mohan, R. (1987). Monte Carlo simulation of a cobalt 60 beam. Technical reports Medical Physics, 14(3), 414-419. https://doi.org/10.1118/1.596120
  • Jeraj, M. & Robar, V. (2004). Multileaf collimator in radiotherapy. Radiology and Oncology, 38(3), 235-240. Retrieved from: https://www.radioloncol.com/index.php/ro/article/view/1335
  • Joshi, C. P., Darko, J., Vidyasagar, P. B., & Schreiner, L. J. (2008). Investigation of an efficient source design for Cobalt-60-based tomotherapy using EGSnrc Monte Carlo simulations. IOP Publishing, Physics in Medicine and Biology, 53, 575–592. Retrieved from: https://iopscience.iop.org/article/10.1088/0031-9155/53/3/005/meta
  • Khan, F. M. (2003). The Physics of Radiation Therapy. A Wolters Kluwer Company, (3) 154, 160-162, 273-276, Minneapolis, Minnesota.
  • Kürem, H. B. S. (2020). The comparision of gamma-rays transmissions between measurement and simulation obtained wi̇th the protective blocks developed as an alternative to the cerrobend blocks used in radiotherapy. Published Master Thesis, Bitlis Eren University, Physics Department, Bitlis, Turkey. Retrieved from:: https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • McAlister, D. (2018). Gamma ray attenuation properties of common shielding materials. PhD Thesis, PG Research Foundation, Inc. 1955 University Lane Lisle, IL 60532, USA. Retrieved from: https://edisciplinas.usp.br/pluginfile.php/918077/mod_resource/content/1/gamma%20ray%20attenuation.pdf
  • Mostafa, A. M. A., Issa, S. A. M. & Sayyed, M. I. (2017). Gamma-ray shielding properties of PbO-B2O3 -P2O5 doped with WO3. Elsevier Journal of Alloys and Compounds, 708, 294-300. https://doi.org/10.1016/j.jallcom.2017.02.303
  • Oliveira, A. C. H., Vieira, J. W., Santana, M. G., & Lima, F. R. A. (2013). Monte Carlo Simulation of a Medical Linear Accelerator for Generation of Phase Spaces. International Nuclear Atlantic Conference - INAC. Retrieved from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/015/46015552.pdf
  • Ozyurt, O., Altinsoy, N., Karaaslan, Ş. İ., Bora, A., Büyük, B., & Erk, İ. (2018). Calculation of gamma ray attenuation coefficient of some granite samples using a Monte Carlo simulation code. Radiation Physics and Chemistry, 144, 271-275. https://doi.org/10.1016/j.radphyschem.2017.08.024
  • Perini, A. P., Neves, L. P., Fernandez-Varea, J. M., Büermann, L. & Caldas, L. V. E. (2013). Evaluation and Simulation of a New Ionization Chamber Design for use in Computed Tomography Beams IEEE Transactions on Nuclear Science, 60(2), 768-773. Retrieved from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6428665
  • Reda, S. M. (2016). Gamma ray shielding by a new combination of aluminium, iron, copper and lead using MCNP5”, Arab Journal of Nuclear Science and Applications, 94(4), 211-217. Retrieved from: http://www.esnsa-eg.com/download/researchFiles/(23)%20%20%20%20%20116-15.pdf
  • Sarrut, D., Bardies, M., Boussion, N., Freud, N., Jan, S., Letang, J.M., Loudos, G., Maigne, L., Marcatili, S., Mauxion, T., Papadimitroulas, P., Perrot, Y., Pietrzyk, U., Robert, C., Schaart, D., Visvikis, D. & Buvat, I. (2014). A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Medical Physics, 41(6), 1-14. https://doi.org/10.1118/1.4871617
  • Seenappa, L., Manjunatha, H. C., Chandrika, B. M., & Chikka, H. (2017). A Study of Shielding Properties of X-ray and Gamma in Barium Compounds. Journal of Radiation Protection and Research, 42(1), 26-32. https://doi.org/10.14407/jrpr.2017.42.1.26
  • Simon, R. C., Sorenson, J. A. & Michael, E.P. (1980-2012). Physics in Nuclear Medicine. Fourth Edition, Saunders, An imprint of Elsevier Inc. Taherkhani, A., Mohammadi, M., Saboori, M. S., & Changizi, V. (2010). Evaluation of the physical characteristic of Cerrobend blocks used for radiation therapy. International Journal of Radiation Research, 8(2), 93-101. Retrieved from: http://ijrr.com/article-1-622-en.pdf
  • Tarım, U. A., & Gürler, O. (2018). Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses. Sakarya University Journal of Science, 22(6), 1848-1852. https://doi.org/10.16984/saufenbilder.443765
  • Technical Specifications of External Beam Gamma Teletheraphy System. Best Theratronics. Retrieved from: http://www.theratronics.ca/PDFs/BT_GB_100-80_tech_specs.pdf
  • Tekin, H. O., Ergüzel, T. T., Sayyed, M. I., Singh, V. P., Manıcı, T., Altunsoy, E. E. & Agar, O. (2018). An investigation on shielding properties of different granite samples using MCNPX Code. Digest Journal of Nanomaterials and Biostructures, 13(2), 381-389. Retrieved from: https://hdl.handle.net/11492/2641
  • Tekin, H. O. & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(95), 1-4. Retrieved from: https://link.springer.com/article/10.1007/s41365-017-0253-4
  • Tellili, B., Elmahroug, Y., & Souga, C. (2017). Investigation on radiation shielding parameters of cerrobend alloys. Nuclear Engineering and Technology, 49,1758-1777. https://doi.org/10.1016/j.net.2017.08.020
  • URL-1 Open Gate Collaboration, Users Guide V8. Retrieved from: http://www.opengatecollaboration.org/
  • Wojcicka, J. B., Yankelevich, R., Werner, B. L., & Lasher, D. E. (2008). Technical Note: On Cerrobend shielding for 18-22 MV electron beams. Medical Physics, 35(10), 4625-4629. Retrieved from: https://pubmed.ncbi.nlm.nih.gov/18975708/
  • Yavuzkanat, N. (2010). The Comparison of Gamma-Rays Transmissions of Shielding Blocks with Lead Marbles and Shielding Blocks used in Radiotherapy. Published Master Thesis, Ankara University, Physics Department, Ankara, Turkey. Retrieved from: https://www.ulusaltezmerkezi.net/radyoterapide-kullanilan-koruyucu-bloklar-ile-kursun-bilye-ilaveli-koruyucu-bloklarin-gama-isini-gecirgenliklerinin-karsilastirilmasi/
  • Yorgun, N. Y. (2019). Gamma-ray Shielding Properties of Lithium Borate Glass Doped with Colemanit Mineral. BEU Fen Bilimleri Dergisi, 8(3), 762-771. https://dergipark.org.tr/tr/pub/bitlisfen/issue/49103/525527
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nuray Yavuzkanat

Hazal Burcu Saraç Kürem

Publication Date December 29, 2020
Submission Date June 15, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

APA Yavuzkanat, N., & Saraç Kürem, H. B. (2020). Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy. Journal of Advanced Research in Natural and Applied Sciences, 6(2), 364-377. https://doi.org/10.28979/jarnas.844955
AMA Yavuzkanat N, Saraç Kürem HB. Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy. JARNAS. December 2020;6(2):364-377. doi:10.28979/jarnas.844955
Chicago Yavuzkanat, Nuray, and Hazal Burcu Saraç Kürem. “Monte Carlo Simulation of the Gamma-Ray Transmissions for the Newly Designed Shielding Blocks Used in Radiotherapy”. Journal of Advanced Research in Natural and Applied Sciences 6, no. 2 (December 2020): 364-77. https://doi.org/10.28979/jarnas.844955.
EndNote Yavuzkanat N, Saraç Kürem HB (December 1, 2020) Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy. Journal of Advanced Research in Natural and Applied Sciences 6 2 364–377.
IEEE N. Yavuzkanat and H. B. Saraç Kürem, “Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy”, JARNAS, vol. 6, no. 2, pp. 364–377, 2020, doi: 10.28979/jarnas.844955.
ISNAD Yavuzkanat, Nuray - Saraç Kürem, Hazal Burcu. “Monte Carlo Simulation of the Gamma-Ray Transmissions for the Newly Designed Shielding Blocks Used in Radiotherapy”. Journal of Advanced Research in Natural and Applied Sciences 6/2 (December 2020), 364-377. https://doi.org/10.28979/jarnas.844955.
JAMA Yavuzkanat N, Saraç Kürem HB. Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy. JARNAS. 2020;6:364–377.
MLA Yavuzkanat, Nuray and Hazal Burcu Saraç Kürem. “Monte Carlo Simulation of the Gamma-Ray Transmissions for the Newly Designed Shielding Blocks Used in Radiotherapy”. Journal of Advanced Research in Natural and Applied Sciences, vol. 6, no. 2, 2020, pp. 364-77, doi:10.28979/jarnas.844955.
Vancouver Yavuzkanat N, Saraç Kürem HB. Monte Carlo Simulation of the Gamma-Ray Transmissions for the newly Designed Shielding Blocks used in Radiotherapy. JARNAS. 2020;6(2):364-77.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).