Research Article
BibTex RIS Cite

Lipid Productivity of Marine Microalgae Dunaliella tertiolecta in Marmara Seawater and Johnson’s Media with Different Salinities and Evaluation as A Raw Material Source for Biofuel Production

Year 2021, Volume: 7 Issue: 2, 266 - 273, 30.06.2021
https://doi.org/10.28979/jarnas.842714

Abstract

Microalgae are increasingly used in the production of various industrial chemicals. Lipids from major microalgae crops are similar to lipids obtained from oilseed plants and can be converted into biodiesel, moreover, microalgae are more advantageous than plants in oil production in many ways. Therefore, oil and biodiesel production technology from microalgae is a current and interesting research topic. The effect of salinity in the nutrient medium on the growth and lipid productivity of marine microalgae Dunaliella tertiolecta was investigated. The usability of Marmara Seawater (MSW) as a growth medium and its suita-bility for microalgae were also investigated. The highest cell concentration (1.53gdw / L), growth rate (μmax = 0.006h-1) and oil productivity (12.8 (g / L. Day) (10-3)) in nutrient medium (5g) were obtained. On the other hand, the cetane number was calculated according to the dominant arachidic acid (C20:0), it was determined as 74.9 and the average molecular weight of the oil was calculated as 849.1 g / mol. Ac-cording to the experimental results, it is predicted that microalgae lipids will be widely used as an alterna-tive to vegetable oils soon as raw materials.

Thanks

The author thanks Dr. Turgay ÇAKMAK for providing microalgae culture

References

  • Bligh, E. G., & Dyer, W.J. (1959). A Rapid Method of Total Lipid Extraction and Purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099.
  • Brennan, L. & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, pro-cessing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577. https://doi.org/10.1016/j.rser.2009.10.009.
  • Chisti, Y. (2007). Biodiesel from Microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001.
  • David, F., Sandra, P. ve Vickers, A.K. (2005). Column selection for the analysis of fatty acids methyl esters. Ap-plication Agilent Technologies Incorporation. Retrieved from: https://www.agilent.com/cs/library/applications/5989-3760EN.pdf
  • Eryalçın, K. M., Roo, J., Saleh, R., Atalah, E., Benítez, T., Betancor, M. & Izquierdo, M. (2013). Fish oil re-placement by different microalgal products in microdiets for early weaning of gilthead sea bream (Sparus aurata, L.). Aquaculture Research, 44(5), 819-828. https://doi.org/10.1111/j.1365-2109.2012.03237.x.
  • Ganuza, E. & Izquierdo, M. (2007). Lipid accumulation in Schizochytrium G13/2S produced in continuous cul-ture. Applied Microbiology and Biotechnology, 76, 985–990. https://doi.org/10.1007/s00253-007-1019-4.
  • Halim, R., Danquah, M. K., Webley, P. A. (2012). Extraction of Oil from Microalgae for Biodiesel Production: A review. Biotechnology Advances, 30(3), 709-732. https://doi.org/10.1016/j.biotechadv.2012.01.001.
  • Hidalgo, P., Toro, C., Ciudad, G. & Navia, R. (2013). Advances in direct transestrification of microalgal biomass for biodiesel production. Reviews in Environmental Science and Bio/Technology, 12(2), 179-199. https://doi.org/10.1007/s11157-013-9308-0.
  • Hopkins, T.C., Sullivan Graham, E.J. & Schuler, A.J. (2019). Biomass and lipid productivity of Dunaliella tertio-lecta in a produced water-based medium over a range of salinities. Journal of Applied Phycology, (31), 3349–3358. https://doi.org/10.1007/s10811-019-01836-3.
  • Klopfenstein, W. E. (1982). Estimation of Cetane Index for Esters of Fatty Acids. Journal of American Oil Chemists Society, 59(12), 531–533. https://doi.org/10.1007/BF02636316.
  • Knothe, G. (2010). Biodiesel and renewable diesel:A comparison. Progress in Energy and Combustion Science, 36, 364-373. https://doi.org/10.1016/j.pecs.2009.11.004.
  • Krisnangkura, K. (1986). A Simple Method for Estimation of Cetane Index of Vegetable Oil Methyl Esters. Journal of American Oil Chemists Society, 63(4), 552–553. https://doi.org/10.1007/BF02645752.
  • Kutluk, T. (2019). Production of Different Chlorella Species used in Biodiesel and Waste Water Treatment. (Ph.D. thesis). Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi.
  • Mata, M.T, Martinas, A.A. & Caetano, N.S. (2010). Microalgea for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14,217-232. https://doi.org/10.1016/j.rser.2009.07.020.
  • Mata, T. M., Martins, A. A., & Caetano N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020.
  • Pick, U. & Avidan, O. (2017). Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliel-la tertiolecta. Journal of Experimental Botany, 68(17), 4939–4950. https://doi.org/10.1093/jxb/erx280.
  • Stephens, E., Ross, I.L., Mussgnug, J.H., Wagner, L.D., Browitzka, M.A., Posten, C., Kruse, O. & Hankamer, B. (2010). Future prospects of microalgal biofuel production systems. Trends in Plant Science, 15, 554-564. https://doi.org/10.1016/j.tplants.2010.06.003.
  • Takagi, M. & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and tri-acylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 10, 223–226. https://doi.org/10.1263/jbb.101.223.
  • Tang, H., Abunasser, N., Garcia, M.E.D., Chen, M., Simon, K.Y. & Salley, S.O. (2011). Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy, 88:3324–3330. https://doi.org/10.1016/j.apenergy.2010.09.013.
  • Tsukahara, K. & Sawayama, S. (2005). Liquid Fuel Production using Microalgae. Journal of the Japan Petrole-um Institute, 48(5), 251-259. https://doi.org/10.1627/jpi.48.251.
  • Türkoğlu, M., Yenici, E., İşmen, A., & Kaya, S. (2004). Variations of nutrient and chlorophyll-a in the Çanak-kale Strait (Dardanelles). Ege Journal of Fisheries & Aquatic Sciences 21, 93-98. Retrieved from: http://www.egejfas.org/tr/download/article-file/57874.
Year 2021, Volume: 7 Issue: 2, 266 - 273, 30.06.2021
https://doi.org/10.28979/jarnas.842714

Abstract

References

  • Bligh, E. G., & Dyer, W.J. (1959). A Rapid Method of Total Lipid Extraction and Purification. Canadian journal of biochemistry and physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099.
  • Brennan, L. & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, pro-cessing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577. https://doi.org/10.1016/j.rser.2009.10.009.
  • Chisti, Y. (2007). Biodiesel from Microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001.
  • David, F., Sandra, P. ve Vickers, A.K. (2005). Column selection for the analysis of fatty acids methyl esters. Ap-plication Agilent Technologies Incorporation. Retrieved from: https://www.agilent.com/cs/library/applications/5989-3760EN.pdf
  • Eryalçın, K. M., Roo, J., Saleh, R., Atalah, E., Benítez, T., Betancor, M. & Izquierdo, M. (2013). Fish oil re-placement by different microalgal products in microdiets for early weaning of gilthead sea bream (Sparus aurata, L.). Aquaculture Research, 44(5), 819-828. https://doi.org/10.1111/j.1365-2109.2012.03237.x.
  • Ganuza, E. & Izquierdo, M. (2007). Lipid accumulation in Schizochytrium G13/2S produced in continuous cul-ture. Applied Microbiology and Biotechnology, 76, 985–990. https://doi.org/10.1007/s00253-007-1019-4.
  • Halim, R., Danquah, M. K., Webley, P. A. (2012). Extraction of Oil from Microalgae for Biodiesel Production: A review. Biotechnology Advances, 30(3), 709-732. https://doi.org/10.1016/j.biotechadv.2012.01.001.
  • Hidalgo, P., Toro, C., Ciudad, G. & Navia, R. (2013). Advances in direct transestrification of microalgal biomass for biodiesel production. Reviews in Environmental Science and Bio/Technology, 12(2), 179-199. https://doi.org/10.1007/s11157-013-9308-0.
  • Hopkins, T.C., Sullivan Graham, E.J. & Schuler, A.J. (2019). Biomass and lipid productivity of Dunaliella tertio-lecta in a produced water-based medium over a range of salinities. Journal of Applied Phycology, (31), 3349–3358. https://doi.org/10.1007/s10811-019-01836-3.
  • Klopfenstein, W. E. (1982). Estimation of Cetane Index for Esters of Fatty Acids. Journal of American Oil Chemists Society, 59(12), 531–533. https://doi.org/10.1007/BF02636316.
  • Knothe, G. (2010). Biodiesel and renewable diesel:A comparison. Progress in Energy and Combustion Science, 36, 364-373. https://doi.org/10.1016/j.pecs.2009.11.004.
  • Krisnangkura, K. (1986). A Simple Method for Estimation of Cetane Index of Vegetable Oil Methyl Esters. Journal of American Oil Chemists Society, 63(4), 552–553. https://doi.org/10.1007/BF02645752.
  • Kutluk, T. (2019). Production of Different Chlorella Species used in Biodiesel and Waste Water Treatment. (Ph.D. thesis). Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi.
  • Mata, M.T, Martinas, A.A. & Caetano, N.S. (2010). Microalgea for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14,217-232. https://doi.org/10.1016/j.rser.2009.07.020.
  • Mata, T. M., Martins, A. A., & Caetano N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020.
  • Pick, U. & Avidan, O. (2017). Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliel-la tertiolecta. Journal of Experimental Botany, 68(17), 4939–4950. https://doi.org/10.1093/jxb/erx280.
  • Stephens, E., Ross, I.L., Mussgnug, J.H., Wagner, L.D., Browitzka, M.A., Posten, C., Kruse, O. & Hankamer, B. (2010). Future prospects of microalgal biofuel production systems. Trends in Plant Science, 15, 554-564. https://doi.org/10.1016/j.tplants.2010.06.003.
  • Takagi, M. & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and tri-acylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 10, 223–226. https://doi.org/10.1263/jbb.101.223.
  • Tang, H., Abunasser, N., Garcia, M.E.D., Chen, M., Simon, K.Y. & Salley, S.O. (2011). Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy, 88:3324–3330. https://doi.org/10.1016/j.apenergy.2010.09.013.
  • Tsukahara, K. & Sawayama, S. (2005). Liquid Fuel Production using Microalgae. Journal of the Japan Petrole-um Institute, 48(5), 251-259. https://doi.org/10.1627/jpi.48.251.
  • Türkoğlu, M., Yenici, E., İşmen, A., & Kaya, S. (2004). Variations of nutrient and chlorophyll-a in the Çanak-kale Strait (Dardanelles). Ege Journal of Fisheries & Aquatic Sciences 21, 93-98. Retrieved from: http://www.egejfas.org/tr/download/article-file/57874.
There are 21 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

Togayhan Kutluk

Publication Date June 30, 2021
Submission Date December 18, 2020
Published in Issue Year 2021 Volume: 7 Issue: 2

Cite

APA Kutluk, T. (2021). Lipid Productivity of Marine Microalgae Dunaliella tertiolecta in Marmara Seawater and Johnson’s Media with Different Salinities and Evaluation as A Raw Material Source for Biofuel Production. Journal of Advanced Research in Natural and Applied Sciences, 7(2), 266-273. https://doi.org/10.28979/jarnas.842714
AMA Kutluk T. Lipid Productivity of Marine Microalgae Dunaliella tertiolecta in Marmara Seawater and Johnson’s Media with Different Salinities and Evaluation as A Raw Material Source for Biofuel Production. JARNAS. June 2021;7(2):266-273. doi:10.28979/jarnas.842714
Chicago Kutluk, Togayhan. “Lipid Productivity of Marine Microalgae Dunaliella Tertiolecta in Marmara Seawater and Johnson’s Media With Different Salinities and Evaluation As A Raw Material Source for Biofuel Production”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 2 (June 2021): 266-73. https://doi.org/10.28979/jarnas.842714.
EndNote Kutluk T (June 1, 2021) Lipid Productivity of Marine Microalgae Dunaliella tertiolecta in Marmara Seawater and Johnson’s Media with Different Salinities and Evaluation as A Raw Material Source for Biofuel Production. Journal of Advanced Research in Natural and Applied Sciences 7 2 266–273.
IEEE T. Kutluk, “Lipid Productivity of Marine Microalgae Dunaliella tertiolecta in Marmara Seawater and Johnson’s Media with Different Salinities and Evaluation as A Raw Material Source for Biofuel Production”, JARNAS, vol. 7, no. 2, pp. 266–273, 2021, doi: 10.28979/jarnas.842714.
ISNAD Kutluk, Togayhan. “Lipid Productivity of Marine Microalgae Dunaliella Tertiolecta in Marmara Seawater and Johnson’s Media With Different Salinities and Evaluation As A Raw Material Source for Biofuel Production”. Journal of Advanced Research in Natural and Applied Sciences 7/2 (June 2021), 266-273. https://doi.org/10.28979/jarnas.842714.
JAMA Kutluk T. Lipid Productivity of Marine Microalgae Dunaliella tertiolecta in Marmara Seawater and Johnson’s Media with Different Salinities and Evaluation as A Raw Material Source for Biofuel Production. JARNAS. 2021;7:266–273.
MLA Kutluk, Togayhan. “Lipid Productivity of Marine Microalgae Dunaliella Tertiolecta in Marmara Seawater and Johnson’s Media With Different Salinities and Evaluation As A Raw Material Source for Biofuel Production”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 2, 2021, pp. 266-73, doi:10.28979/jarnas.842714.
Vancouver Kutluk T. Lipid Productivity of Marine Microalgae Dunaliella tertiolecta in Marmara Seawater and Johnson’s Media with Different Salinities and Evaluation as A Raw Material Source for Biofuel Production. JARNAS. 2021;7(2):266-73.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).